
"optimal"

Economics,

plethora

with

that

Using Mobile Agents in Real World: A Survey and

Evaluation of Agent Platforms

Josef Altmann, Franz Gruber, Ludwig Klug, Wolfgang Stockner, Edgar Weippl
Software Competence Center Hagenberg

Hauptstr. 99

A-4232 Hagenberg, Austria

+43 7236 3343 800

{firstname .lastname} @ scch .at

ABSTRACT

In the last few years agent technology, especially mobile agents,

became a new exciting field in computer science. Agent

development is getting more and more interesting, even in

commercial infrastructures, so it is worth considering in depth

their strengths and the situations in which they can be used

effectively. During our research work we figured out, that there

exist a huge number of approaches, toolkits, and platforms of

different quality and maturity. This fact led us to the problem of

evaluating them to find an (in the sense of productivity)

platform.

Firstly, to get an impression what should be possible for an agent

platform, we collected the current research results and summarized

them in a state-of-the-art report. After that, we defined a set of

criteria, which collected the requirements to the platforms. Then

we selected some fundamental criteria in a way that if one

platform does not fulfill these criteria it is immediately knocked

out from further evaluation. For the remaining platforms we

applied the complete set of criteria, weighted them, and got a fmal

evaluation result.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial

Intelligence Intelligent agents, Languages and structures -

General Terms
Management, Measurement, Documentation, Performance,

Design, Reliability, Experimentation, Security,

Standardization, Languages.

Keywords
mobile agents; intelligent agents; agent platform evaluation

1. INTRODUCTION
For the last couple of years mobile agents have been a

thrilling and challenging area of research. The surge of recent

activity in mobile agents has resulted in a of agent

development toolkits and platforms [1]. Many of them are

research projects huge differences in support, stability, and

documentation. Even among the commercial platforms there are

some are not likely to support future versions of Java.

As the variety of advantages offered by agents are commonly

known ([9] is a good starting point and provides an excellent

overview; another interesting source could be [6], which deals with

research efforts on agent technology funded by the European

Union) one may be inclined to build large-scale projects on existing

agent platforms. However, relying on possibly faulty and no

longer maintained basic building blocks is a risk not to be

underestimated. The obvious approach to mitigate the risk is to

thoroughly assess various platforms. With this paper we try to

provide you, with a checklist-like concept of how to efficiently

and effectively perform such an assessment. We will repeatedly

point to our findings based on a comparison made in Nov 2000.

[5], [7] and [8] contain an extensive report, exceeding sixty pages,

on a comprehensive comparison of Java agent platforms.

However, as research on mobile agents continuously advances, our

findings are most likely to be partially outdated by the time this

article is published. Therefore we think the main value for the

Administrador
Nota
@INPROCEEDINGS{Altmann2001,
 author = {J. Altmann and F. Gruber and L. Klug and W. Stockner and E. Weippl},
 title = {Using Mobile Agents in Real World: A Survey and Evaluation of Agent
	Platforms},
 booktitle = {Proceedings of the Second International Workshop on Infrastructure
	for Agents, MAS, and Scalable MAS},
 year = {2001},
 file = {Altmann2001.pdf:Altmann2001.pdf:PDF},
 owner = {javier},
 timestamp = {2009.01.29}
}

All

(binary): provide

migrating?

mechanisms

reader lies in having the conceptual tools for updating and tailoring

the assessment to hislher needs.

2. A QUICK OVERVIEW
In this section we will give an overview of how to plan and

execute an assessment of agent platforms. essential issues will

be described in the following section, omitted details can be found

in [8]. Based on this procedure we evaluated and ranked thirty

agent platforms so that but a handful remained short-listed for

thorough analysis.

The first step is to define criteria upon which the evaluation

will be based. Once these criteria are defined, they have to be

elaborated in greater detail by defining aspects for each criterion.

Thereafter knockout criteria (and aspects) should be specified and

weights assigned to all others to allow results to be ranked.

Finally, the last step of the preparation is to compile a list of

agent platforms to be evaluated.

As the evaluation process commences knockout criteria are

applied to eliminate all platforms that obviously require no further

attention. The remaining platforms are ranked and having found a

cut-off threshold the top platforms are short-listed for in-depth

analysis.

The remainder of the paper is structured as follows. Section 3

will discuss evaluation criteria we suggest to use, their various

aspects, and how to measure them. Section 4 will give an overview

over the evaluation process and highlight our findings that lead

selecting one specific agent platform (e.g., the "winning"

platform). However, we want to emphasize that the entire

selection process was obviously based on the requirements we

specified; other projects requiring an adaptation of various aspects

and possibly also some criteria will find other agent platforms to

be better suited. Moreover, our evaluation is a snapshot of

platfomls taken in November 2000.

3. EVALUATION CRITERIA
Before describing the evaluation criteria in detail we will

briefly define fundamental terms used throughout this paper. We

understand measurement method as the kind of technique used to

evaluate criteria. Possible techniques include but are not limited to

analysis of user licenses, existing docUlllentation, Web pages

describing products as well as techniques, and empiric tests.

A criterion can be broken up into aspects containing

questions to be answered during evaluation. For instance, the

criterion 'environment' may be divided into the aspects 'client',

answered. Questions used for

answer

'server', and 'network'. For each of these aspects, there are one or

more questions to be evaluating

aspects can be distinguished by the type of expected. A

binary question has to be answered either by 'yes' or 'no'.

Questions may be answered using marks ranging from '1' to '4',

with '1' being the best value and '4' the worst. Obviously, the

range can be arbitrarily chosen to fit an organizations current

practice. Furthermore, some questions require a value as answer,

such as for example the price of an agent platform.

In the following subsections we will elaborate criteria such as

security, availability, environment, development, characteristic

properties of agent platforms, and knockout criteria.

3.1 Security
Security encompasses a variety of security mechanisms including

encryption, public key infrastructure (PKI), and support for

executing signed code. The criterion describes the available

mechanisms guaranteeing a secure execution environment of an

agent development platform. data encryption

capabilities, and code signing is part of this criterion.

Additionally,

A detailed study of agent platfoffilS and programming language

documentation (e.g., the

of agents?

measurement method) should focus on

five aspects.

Authentication Are there any mechanisms to

authentication Can one trust code that

migrated?

has been

Encryption of data (mark): Can code and data be transported in

encrypted form? Is it possible to identify whether code was

modified while

Certificates (mark): Does the platform support certificates

including deployment of certificates?

Authorization (mark): Does the platform include or support a

role-based authorization system?

Access restriction (mark): Does the platform provide

for a flexible access control to agent and agent system resources

(e.g., the file system)?

3.2 Availability
Availability, as we understand it, includes both preconditions

and legal as well as fmancial aspects regarding deployment of a

platform. As measurement method we propose to analyze

licenses and/or sales contracts, platform docUlllentation,

required for installation, and effort required for maintenance. For

user

time

our study we closely looked at four aspects.

Evaluation version (binary): Is there an evaluation version

available?

Platform state (mark): What is the development state of the

product (alpha, release, phase out, application examples)? This

aspect is evaluated as follows: "1" - production release, "2"

and "4"

- beta

release, "3" - early beta release, phase out or pending-

(e.g., not supported or improved anymore).

3.3 Environment
The criterion describes what environmental preconditions must be

met to successfully use an agent development platform in an

infrastructure. To measure the five aspects of this

criterion we relied on documentation shipped with the platform

and supporting Web pages.

Documentation (binary): Is the agent platform well documented?

Consider the following questions: What does the documentation

comprise (security, development, debugging, etc.)? For which

target groups (users' guide, programmers' guide, etc.) is

documentation available?

Supported operating systems (jJinary): Is the agent environment

platform operating system independent?

3.4 Development
The criterion 'development' evaluates how efficient programs for

the agent platform in question can be designed, implemented, and

tested. Wizards, for example, would facilitate the process of

creating new agents. To measure this mission-critical criterion, we

will go beyond studying platform and programming

documentation to include hands-on experience from prototypical

implementations.

Programming language (mark): Which programming languages does

the agent platform support for development and execution?

Support for more languages yields higher marks. Nonetheless, we

specified Java to be the minimal requirement.

Graphical Administration of Platform (mark): Does the platform

provide a graphical administration tool?

Monitoring (mark): Does the agent platform provide a tool to

observe agent migration and execution?

Debugging (mark): Is there an integrated debugging tool?

Rapid Application Development (RAD) (mark): Does the

platform include a full-featured editor including wizards and help

functions?

Deployment (mark): Does the platform include support for the

deployment of agents?

Architecture (binary): Does the platform support established

design principles in design, development, and operation of agent

systems (e.g., InteRRaP described by [3])?

3.5 Characteristic Properties
Characteristic properties describe properties specifically targeted

at agent platforms. To analyze the seven aspects of characteristic

properties we relied on documentation and prototypical

realization of agents.

Mobility (binary): This aspect investigates if the platform

supports mobile agents. It is divided into several sub-aspects (e.g.,

network traffic, migration strategies), which should be taken into

consideration for evaluation.

Standards (FIPA and MAS IF) (binary): Does the platform

observe these standardization efforts?

eXlstmg 3.6 Knockout Criteria
To streamline the evaluation process and to focus evaluation

efforts on promising agent platforms we will introduce knockout

criteria. In Table 1 all criteria are listed, which eliminate a platform

immediately from further evaluation. These knockout criteria are

not fulfilled by a platform if at least one aspect is not supported.

Note that not the criterion eliminates the platform, but even a

single aspect. Obviously, for the evaluation of knockout criteria

only binary evaluation is easily applicable.

Criterion Aspect

Environment Does the platform support the Windows

and UNIX operation environments?

Environment Does the platform provide any

documentation?

Development Does the development platform support

JAVA for agent development?

Characteristic Does the platform provide support for

Properties mobile agents?

Availability Is there a test (full functional, limited,

student) version available?

Table 1: Knockout criteria and aspects.

3.7 Ranking of Criteria
Having applied the knockout criteria, the next step is to assign

weights to criteria (see Table 2) so that the platforms can be

ranked. This ranking establishes the sequence in which platforms

are to be evaluated in greater detail. As the number of platforms

that pass the knockout criteria may be arbitrary large we have to

validate and prioritize other criteria to get an ordered list of agent

development platforms according to our requirements.

If a criterion is valued by a binary, a value of '4' is assigned for

'No' whereas '1' is assigned for 'Yes'. If a feature cannot be

evaluated it is graded as if not available (e.g., '4').

Criteria / Aspects Weight

All aspects of security, e.g., authentication, 50%

encryption, certification, authorization, access

restriction

Development state of the platform (alpha, beta, 20%
preview, release, technology study, academic)

Development supporting tools 25%

Standards (FIPA and MASIF) 5%

Table 2: Relative weights of criteria.

3.8 Test Specification
In this subsection we will show what additional specifications

were required for a prototypical implementation, which

constitutes in-depth analysis of the short listed platforms. In

Table 3 the test environment is described, followed by an

elaboration on how to assess mobility, the ease of administering

should

returning

the

this

threads

either

agents, network traffic analysis, and last but not least issues of

stability,

Hardware Description

Processor Pentium 111600

Memory 256 MB RAM

Network 100 Mbit Ethernet

Table 3: Test system specification.

3,B,] Mobility
For our prototype we will consider only weak migration, as Java

does not provide support for storing an objects' current execution

state and its serialization,

Regarding mobility, the prototype be capable of (1)
migrating to another platform, (2) looking autonomously for its

path of future migration, and (3) to its host of origin.

The implementation of all agents will be based on following high­

level design. The agent has an internal vector of the places to visit

and keeps track of where it has already been. The next host to

migrate to will be randomly selected. Once the internal list of the

hosts to migrate to is empty, the agent should return to its origin.

3.B.2 Administration of Agents
After migrating to a new platform the agent should open a dialog

window displaying its prior and next location. Finally, as soon as

the user closes the dialog, agents will migrate to the next

platform. This allows getting an overview of the administration

tasks and how tools can help developers or server administrators.

The migration should be visible on the administration GUI and the

agents' migration path can be followed easily.

3.B.3 Network Traffic
We want to test whether the delay introduced by migration only

depends on network topology and how much bandwidth is

actually required. As quantitative analysis proves to be tedious,

we will evaluate this aspect in a qualitative way only. If a

significant delay in migration between two computers is observed,

we will have to find the reasons for this behavior. In the

prototype we will measure delays by measuring the current

system time just before migration; this time will be stored and

carried by the agent while migrating. On the arrival at the next

platform the first statement will measure the current system time.

Departure time and arrival time are displayed in the message box

mentioned above. Obviously, clocks have to be synchronized.

During network performance tests we turned off all security

features.

3.9 Stability
To evaluate hard to measure aspect we will observe migration

with regards to the following details.

(I) Does the agent platform delete the agents' data and

after migration? This can be observed by tracking memory

allocation of the processes.

(2) Does the platform remain in a stable state after frequent

migration? This can be evaluated by continuously executing the

prototype agent. If the platform is as responsive as it was before

and if memory allocation of the platform did not increase

depending on the number of iterations the platform is considered

to be stable.

4. EVALUATION RESULTS
In this section we will first summarize our findings based on an

evaluation of agent platforms performed in November 2000.
Thereafter we will rank the platforms and will finally show which

platforms have been select for further evaluation.

4.1 Knockout Criteria
A criterion can be binary or evaluated by a mark. For a

binary criterion the possible values are 'Y' (Yes) or 'N' (No). For

marks the value '1' is best and '4' worst. In the case of ranking

criterion 12 (Programming language) a value of '4' means that the

platform supports the minimal requirement, namely Java. A value

of '3' indicates that the platform supports a second language, a '2'
corresponds to 3 supported languages, and a mark of '1' is

awarded if more than 3 languages are being supported.

Note that a question mark in the matrix indicates a criterion that

was not evaluated because it was no longer relevant (e.g., if the

platform fails one knockout criterion others do not have to be

evaluated) .

The main focus of our evaluation lied upon security features of

agent development platforms. The second most important issue

includes development support of the platform. Finally, we judged

conformity with the standardization efforts of FIPA and MASIF

to be relevant, too. We are aware of the fact that standardization

efforts are in a constant state of flux and are likely to be better

supported in future.

It is evident that many platforms were eliminated due to knockout

criteria such as support of mobility. However, this is not

necessarily a deficiency as a considerable amount of platforms do

not strive for mobility but instead focus on learning and planning

capabilities. Moreover many platforms are still in their infancy or

were never intended to be more than a feasibility study.

3

A'l COl

...,

8 8 8
Agentbuilder

2 Aalets Y Y Y Y
Ajanta

4 Bee-Qent y y y y y

4}

CouQaar

D'Agents

il Gossip ...N Y Y ."L Y...
Grasshopper

13 GyPSY Y Y Y Y Y

20 Jumping y y y y V
Kaariboga

22 ? y Y V N

O}

! 29 Vovaaer Y Y V 'Y

Ranking
Security A'I Development C")

()
i� I� 1m � � .'ri" ; 0:: .a: 2" � � £ i� 1m

lyl3141 131411131414111ylvi

1 y 1 ?I 1 1 4 1 3 1 4 1 4 1 4 1 4 1 3 1 1 N 1 1

INI4141414141413131314141NINI

I I I I I I I I I
IpsfllatjOn

T
ed

I I I I I I I I I I I I I

I I I I I I 141 1 I I I I I I

1#lll:111311141$1414141;1%1%1

INI4141414111413141414141N I NI

INI4141414131414141414141NINI

I;II!I!I;I I;I:I!I;I;I:I!I"I

18

4 4 3 N N

•

KO-Crlterla

1 2
E2)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Platform

('"
(I)
:J5
..!'!!
.�
c
0
" §
-
c
0
/
::::I

�
(I)
C
OJ
�
(I)
.s
II)

('" "E
OJ

"C
c
(I)
a.
(I)

"C
"£
E
(I)

II)
Ol
c

�
(I)
a.
0

E
.g
OJ
0.
(I)
.s
II)

('. C'.c
.

� OJ
c 1:(I) 0E a.
::::I a.() ::::I
0 II)

"C
E>-

c

OJ
(I)

"C 0.":;; "Ee (I)a. E
E a.

0

 OJ
>
(I)0. "C

(I) (I)
.s .s
II) II)
(I) (I)

C'.
!!l
c
OJ
Ol
OJ
�
:.c
0
E
�

.l2
1:
0
a.
a.
::::I
II)
(I)
:g
>
e
a.
E
.g
OJ
0.
(I)
.s
II)
(I)

c

� .Q
"E
(I)
.s

�
"C
'0
c
0
a
e:-()

0

i

c
0
/
N
.3
:5

C.Q

�
(I)a:
II)
li)
Q)

.Sl
OJ
iii
E

�

(I)
Ol
OJ
::::I
Ol
c
..!'!!
Ol
c
"E
E
!!!
[5l

E
0

't:;
OJ
0::
'0
c
0

�
iii"c;
·E
�
(ij()
:.c
a.
OJ

C)
c
";::
g
c

Ol
c
·0C)
::::I

.c

"E
(I)
E
a.
0
OJ
>
(I)0
c
0

B
=a.
a.c(

"C
"i5..

"E
(I)
E
>-
0
0.

�
�()
1
.t::

CL:'
Ci5c(
:::!!:
"C
C
OJ
c(
a.

is
II)
"E
OJ

"C
C
OJ

1 Y Y Y Y N Knocked out

Y
3 y ? Y Y Y Installation failed

4 4 4 y
5 Bond y y y y y Installation failed

6 Concordia Y Y Y Y Y
7 ? ? Y Y N Knocked out

8 2.0 N Y Y Y Y Knocked out

9 FarGo Y Y Y Y Y
10 FIPA-OS Y Y Y Y N Knocked out

1.01

12 Y Y Y Y Y y 2 2 2 2 1 4 2 2

14 Hive y y y y y N 4 4 4 4 3 4 1 1
15 IBM-Able Y y Y Y N Knocked out

16 JACK Y Y Y N N Knocked out

17 Jade y y y y y N 4 4 4 4 1 2 3 3 4 2 N y
Jafmas Y Y Y Y N Knocked out

1 9 Jess ? ? ? ? N Knocked out

Beans

2 1 y y y y y

MadKit Knocked out

23 Mast y Y Y N Y Knocked out

24 Mole y y V Y Y
25 OAA2.0.9 Y V V Y N Knocked out

26 Pathwalker1.0 Y V V Y V
27 Ronin1.1 Y V Y Y N Knocked out

28 Soma 2.0/3.0 Beta Y Y V Y Y
3. Y

30 Zeus 1.02 V Y V V N Knocked out

1) Availability

2) Environment

3)
Characteristic Properties

4) Concordia could not be evaluated because of export restrictionsl

5) During evaluation only italian documentation was available - english documentation will be available soonl

Table 4: Overall criteria evaluation matrix.

system

Security Development
9

Grasshopper

Jumpino

Aalets

Vovaaer 3.3 1 1 4 4 1

Bee-gent

Kaaribooa

4 4

4 4

2

144

17.15

in

maintenance

environment. this

4.2 Ranking
Based on the above findings we proceed by assigning weights to

criteria so that we can compare all platforms. First we have to

map binary information to numeric values so that they are

comparable to marked criteria. For binary criteria we assign '4' for

'No' and '1' for 'Yes'. If a feature cannot be evaluated it is

considered to be not available. We can now rank platforms using

the weights as previously defined.

Table 5 shows the result of the criteria weighting. Smaller values

suggest that a platform fulfills our requirements better and should

therefore be considered for further evaluation.

4.3 In Depth Evaluation
While evaluating platforms we found that nearly each one has its

own philosophy regarding development of agents. The

standardization efforts undertaken by FIPA and MASIF are

considered only by a few agent development platforms. Therefore

substituting one platform by another requires a redesign of all the

code. However, it seems probable that an increasing number of

platforms will follow the standard architectures in near future.

As we were not able to download the Concordia platform due to

export restrictions and because Soma 3.0 Beta did not provide an

English programmer's guide, we decided to exemplarily evaluate

and test the Grasshopper 2.1 platform [2] in depth. For a detailed

report please refer to [8].

Grasshopper is available both for Windows and UNIX version as

it is based on pure Java. A user's guide - though not fully

complete, a programmer's guide and some presentations are

available at the Web site. JavaDoc API documentation is included

with the distribution. Support exceeding bulletin boards and FAQs

is available for a fee.

As Grasshopper relies entirely on Java, agents may only be

developed in Java. Support for mobile agents is integrated in its

architecture.

Moreover, Grasshopper supports internal and external security

mechanisms. For internal security role based authentication and

for external security PKI is used. Grasshopper's role-based

authorization is based on policy files located on every

computer but currently offers no wizard supporting deployment

of these policy files. Additionally, Grasshopper secures agents in

migration based on SSL and also supports X.509 standard digital

certificates.

Grasshopper is delivered with

6 7 8 10 11 12 13 14 15 16 17
1 2 2 2 2 1 4 2 2 4 4 1

Beans 1 1 3 1 1 1 4 2 4 4 4 2

1 3 4 1 1 3 4 1 3 4 4 1

4 4 4 4 4

1 2 4 4 4 3 4 4 4 4 3 4

Jade 4 4 4 4 4 1 4 2 3 3 4

Hive 4 4 4 4 4 3 4 1 1 4 4 3

4 4 4 4 3 4 4 3 4 4 4 2

Mole 4 4 4 1 4 3 4 4 4 4

FarGo 4 4 4 4 4 4 4 3 3 3 4 4

Pathwalker 1.0 4 4 4 4 4 3 4 4 4 4 4 4

Table 5: Application of the criteria weighting.

Result
18 19
1 1 925

4 4 99

1 1 1015

4 4

4 1 149

4 1 1575

4 4 1605

4 4 1675

4 4

4 4 1725

4 4 178

a graphical administration tool

based on Swing and also has a

text oriented interface. On

starting Grasshopper one can

decide which administration to

use.

There are also several

drawbacks such as that

integrated debugging is not

supported and that there are no

development wizards available.

Furthermore, despite being

simple the architecture of agents

is not standardized or

transparent. Nonetheless,

Grasshopper follows FIPA and

MASIF by offering a separate

extension available at the Web site.

Finally, we want to emphasize that Grasshopper is in production

asstate and well supported by mailing list well as commercial

support sources.

5. CONCLUSION
As the area of agent development platforms is in a constant

outdated.

print is inevitably at

strives to

state of flux any comparison published

least partially Our contribution, however,

provide readers with a framework that is easy to adapt to specific

requirements when confronted with the challenge of selecting an

agent development platform for industry-scale projects.

During and after the evaluation of agent platforms, we

already isolated real-world problems that could be solved by the

use of mobile agent technology. The first problem is the

of schemata and the execution of queries in a

heterogeneous distributed database

administration effort

In

security, performance, and

important role. Our approach is to make SQL

procedures mobile, send them directly into the databases, and let

area

plays an

statements and

them perform their tasks locally. In this case, the agent platform

Grasshopper is used to transport the SQL statements as well as

procedures to their destination databases and to handle route

planning as well as security issues.

A second problem that could be solved by the application of

a mobile agent platform is automatic software distribution across

the Internet. Existing software distribution products provide

insufficient support of automatic online distribution across the

Internet, are limited in error handling, and provide insufficient

support for mobile devices as well as inadequate interoperability

of different products. An agent-based solution would be more

flexible, more extendible, platform independent, and would

provide higher interoperability between agent -based software

distribution systems in order to support monitoring, decrease

network traffic, allow central administration, and decrease

maintenance work.

Mobile agents are an ongoing field of study within the ever­

growing autonomous agents arena. The qualitative strengths of

mobile agents, such as their support for disconnected operation

and dynamic deployment, make current agent platforms an

attractive choice for a wider and wider range of distributed

applications.

6. 	 ACKNOWLEDGMENTS
This work has been done in the framework of the Kplus

Competence Center Program, which is funded by the Austrian

Government, the Province of Upper Austria, and the Chamber of

Commerce of Upper Austria.

7. 	 REFERENCES
[1] [Gray, 2000] Gray R. S., Cybenko G., Kotz D., Rus D.,

Mobile agents: Motivations and State of the Art, in Jeffrey

Bradshaw (Eds.) Handbook of Agent Technology,

AAAUMIT Press, 2000.

[2] 	 [IKV, 1999] IKV++ GmbH, Grasshopper Release 2.1

Programmer's Guide, http://www.grasshopper.de. July 2000.

[3] 	 [Muller, 1994] Mtiller, Pischel, Thiel, A pragmatic approach

to modeling autonomous interacting systems, in Wooldridge,

Jennings (Eds.) Pre-Proceedings of the 1994 Workshop on

Agent Theories, Architectures and Languages, 226 - 240,

Amsterdam, The Netherlands, 1994.

[4] 	 [Ghezzi, 1997] C. Ghezzi, G. Vigna, Mobile Code Paradigms

and Technologies: A Case Study, in Proc. Mobile Agents '97,

Springer Verlag, 1997.

[5] 	 [SCCHWeb] Webpage of the EvalAgents Project,

http://www.scch.atlresearchlprojectslEvalAgentslhome

[6] 	 [Sierra, 2000] Sierra, Wooldridge, Adeh, Agent Research and

Development in Europe, IEEE Internet Computing, 81-83,

Sep/Oct 2000.

[7] 	 [TR0049, 2000] Altmann, Grabner, Gruber, Klug, Stockner,

Agent Technology: State of the Art, Technical Report

4912000, Software Competence Center Hagenberg, 2000.

[8] 	 [TR0064, 2000] Altmann, Grabner, Gruber, Klug, Stockner

Evaluation of Agent Platforms, Technical Report 006412000,

Software Competence Center Hagenberg, 2000.

[9] 	 [UMBC-AgentWeb] UMBC AgentWebpage.

http://agents.umbc.edul, University of Maryland, Baltimore

County.

http://agents.umbc.edul
http://www.scch.atlresearchlprojectslEvalAgentslhome
http:http://www.grasshopper.de

