Chapter 25

DIGITAL COMPUTERS APPLIED
TO GAMES

Chess problems are the hymn tunes of mathematics—G. H, HARDY

N_[AGHINES WHICH WILL PLAY GAMES have a long and interesting
history. Among the first and most famous was the chess-playing
automaton constructed in 1769 by the Baron Kempelen; M. Maelzel
took it on tour all over the world, deceiving thousands of people
into thinking that it played the game automatically. This machine
was described in detail by Edgar Allan Poe; it is said to have
defeated Napoleon himself—and he was accounted quite a good
pla)_rer, but it was finally shown up when somebody shouted “Fire”
duz:mg a game, and caused the machine to go into a paroxysm
owing to the efforts of the little man inside to escape.

In about 18go Signor Torres Quevedo made a simple machine—
a real machine this time—which with a rook and king can check-
mate an opponent with a single king. This machine avoids stalemate
very cleverly and always wins its games. It allows an opponent to
p‘lakc two mistakes before it refuses to play further with him, so it
is always possible to cheat by moving one’s own king the length of
the board. The mechanism of the machine is such that it cannot
move its rook back past its king and one can then force a draw!
Th.ls.machine, like Babbage’s “noughts and crosses” machine is
relatively simple, the rules to be obeyed are quite straightforward
and‘ the machines couldn’t lose. Babbage thought that his analyticai
engine ought to be able to play a real game of chess, which is a
much more difficult thing to do.

In this chapter we discuss how a digital computer can be made
to play chess—it does so rather badly, and how it plays draughts—
it does so quite well. We shall also describe a special simple machine
whjch was built to entertain the public during the Festival of
Bn.ta.m. It was called Nimrod because it played nim, a game
whxc.h is like noughts and crosses, in that the tricks which are needed
to win can be expressed in mathematical terms. This machine was
on show in South Kensington for six months and took on all comers.
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During the Festival the Society for Psychical Research came and
fitted up a room nearby in order to see if the operations of the
machine could be influenced by concentrated thought on the part
of the research workers, most of whom were elderly ladies. When
this experiment had failed they tried to discover whether they in
turn could be affected by vibrations from the machine, and could
tell from another room how the game was progressing. Unfortun-
ately this experiment, like the first, was a complete failure, the only
conclusion being that machines are much less co-operative than
human beings in telepathic experiments.

At the end of the Festival of Britain Nimrod was flown to Berlin
and shown at the Trade Fair. The Germans had never seen any-
thing like it, and came to see it in their thousands, so much so in
fact that on the first day of the show they entirely ignored a bar at
the far end of the room where free drinks were available, and it was

- necessary to call out special police to control the crowds. The

machine became even more popular after it had defeated the
Economics Minister, Dr. Erhardt, in three straight games. After
this it was taken to Canada and demonstrated to the Society of
Engineers in Toronto. It is still somewhere on the North American
continent, though it may have been dismantled by now, and it
would be amusing to match it against some of the other nim-playing
machines which have been built in the last year or two.

The reader might well ask why we bother to use these com-
plicated and expensive machines in so trivial a pursuit as playing
games. It would be disingenuous of us to disguise the fact that the
principal motive which prompted the work was the sheer fun of the
thing, but nevertheless if ever we had to justify the time and effort
(and we feel strongly that no excuses are either necessary or called
for) we could quite easily make a pretence at doing so. We have
already explained how hard all programming is to do, and how much
difficulty is due to the incompetence of the machine at taking an
overall view of the problem which it is analysing. This particular
point is brought out more clearly in playing games than in anything
else. The machine cannot look at the whole of a chess board at
once; it has to peer short-sightedly at every square in turn, in much
the same way as it has to look at a commercial document. Research
into the techniques of programming a machine to tackle com-
plicated problems of this type may in fact lead to quite important
advances, and help in serious work in business and economics—
perhaps, regrettably, even in the theory of war. We hope that
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mathematicians will continue to play draughts and chess, and to
enjoy themselves as long as they can.

We have often been asked why we don’t use the machine to
work out the football pools, or even to do something to remove the
present uncertainty about the results of tomorrow’s horse races.
Perhaps one day we shall persuade our mathematicians to apply
themselves to this problem too. It would first be necessary to estab-
lish a series of numerical criteria from which the machine could
predict the results with greater certainty than the ordinary citizen
can achieve with his pin; the presumption underlying the whole
idea is that such criteria do in fact exist, but that they are too
complicated for a man to apply in time, whereas a machine could do
the necessary computations for him. It is most unlikely that a
machine could ever hope to predict (for example) the results of a
single football match, but it is at least possible that a detailed
analysis might significantly improve the odds in favour of the
gambler, so that if he invested on a large enough scale he could
make a profit. It is notoriously true that mathematics, and par-
ticularly the theory of probability, owes more to gambling than
gambling owes to mathematics; perhaps a machine might do
something to restore the balance. Lady Lovelace lost a fortune by
trying to back horses scientifically, and many others have done the
same; all one could hope for is a slight improvement in the odds.
We might make it pay but we doubt it; as an academic exercise it
would be amusing, but we shall give the project a low priority.

CHESS
When one is asked, “Could one make a machine to play chess?”
there are several possible meanings which might be given to the
words. Here are a few—

(a) Could one make a machine which would obey the rules of
chess, i.e. one which would play random legal moves, or which
could tell one whether a given move is a legal one?

(6) Could one make a machine which would solve chess prob-
lems, e.g. tell one whether, in a given position, white has a forced
mate in three?

(¢) Could one make a machine which would play a reasonably
good game of chess, i.e. which, confronted with an ordinary (that is,
not particularly unusual) chess position, would after two or three
minutes of calculation, indicate a passably good legal move?
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(d) Could one make a machine to play chess, and to improve its
play, game by game, profiting from its experience? ;

To these we may add two further questions, unconnected with
chess, which are likely to be on the tip of the reader’s tongue.

(¢) Could one make a machine which would answer questions
put to it, in such a way that it would not be possible to distinguish
its answers from those of a man?

(f) Could one make a machine which would have feelings as
you and I have?

The problem to be considered here is (¢), but to put this problem
into perspective with the others I shall give the very briefest of
answers to each of them.

To (a) and (b) I should say, “This certainly can be done. If it
has not been done already it is merely because there is something
better to do.”

Question (¢) we are to consider in greater detail, but the short
answer is, “Yes, but the better the standard of play required, the
more complex will the machine be, and the more ingenious perhaps
the designer.”

To (d) and (e) I should answer, “I believe so. I know of no really
convincing argument to support this belief, and certainly of none
to disprove it.”

To (f) I should say, “I shall never know, any more than I shall
ever be quite certain that you feel as I do.”

In each of these problems except possibly the last, the phrase,
“Could one make a machine to . ..” might equally well be re-
placed by, ““Could one programme an electronic computer to . . .”
Clearly the electronic computer so programmed would itself constitute
a machine. And on the other hand if some other machine had been
constructed to do the job we could use an electronic computer (of
sufficient storage capacity), suitably programmed, to calculate what
this machine would do, and in particular what answer it would give.

After these preliminaries let us give our minds to the problem of
making a machine, or of programming a computer, to play a
tolerable game of chess. In this short discussion it is of course out of
the question to provide actual programmes, but this does not really
matter on account of the following principle—

If one can explain quite unambiguously in English, with the aid of
mathematical symbols if required, how a calculation is to be done, then it is
always possible to programme any digital computer to do that calculation,
provided the storage capacity is adequate.
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This is not the sort of thing that admits of clear-cut proof, but
amongst workers in the field it is regarded as being clear as day.
Accepting this principle, our problem is reduced to explaining
“unambiguously in English” the rules by which the machine is to
choose its move in each position. For definiteness we will suppose the
machine is playing white.

If the machine could calculate at an infinite speed, and also had
unlimited storage capacity, a comparatively simple rule would
suffice, and would give a result that in a sense could not be improved
on. This rule could be stated:

“Consider every possible continuation of the game from the
given position. There is only a finite number of them (at any rate if
the fifty-move rule makes a draw obligatory, not merely permissive).
Work back from the end of these continuations, marking a position
with white to play as ‘win’ if there is a move which turns it into a
position previously marked as ‘win.’ If this does not occur, but
there is a move which leads to a position marked ‘draw,’ then mark
the position ‘draw.” Failing this, mark it ‘lose.” Mark a position
with black to play by a similar rule with ‘win’ and ‘lose’ interchanged.
If after this process has been completed it is found that there are
moves which lead to a position marked ‘win,’ one of these should be
chosen. If there is none marked ‘win’ choose one marked ‘draw’ if
such exists. - If all moves lead to a position marked ‘lose,” any move
may be chosen.”

Such a rule is practically applicable in the game of noughts and
crosses, but in chess is of merely academic interest. Even when the
rule can be applied it is not very appropriate for use against a weak
opponent, who may make mistakes which ought to be exploited.

In spite of the impracticability of this rule it bears some re-
semblance to what one really does when playing chess. One does
not follow all the continuations of play, but one follows some of them.
One does not follow them until the end of the game, but one follows
them a move or two, perhaps more. Eventually a position seems,
rightly or wrongly, too bad to be worth further consideration, or (less
frequently) too good to hesitate longer over. The further a position
is from the one on the board the less likely it is to occur, and therefore
the shorter is the time which can be assigned for its consideration.
Following this idea we might have a rule something like this—

“Consider all continuations of the game consisting of a move by
white, a reply by black, and another move and reply. The value of
the position at the end of each of these sequences of moves is estimated
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according to some suitable rule. The values at earlier positions are
then calculated by working backwards move by move as in the
theoretical rule given before. The move to be chosen is that which
leads to the position with the greatest value.”

It is possible to arrange that no two positions have the same value.
The rule is then unambiguous. A very simple form of values, but one
not having this property, is an “evaluation of material,” e.g. on the
basis—

P=F
Kt=3
B =3}
R=5
=10

Checkmate = 1000
If B is black’s total and W is white’s, then W/B is quite a good

measure of value. This is better than W — B as the latter does not

encourage exchanges when one has the advantage. Some small
extra arbitrary function of position may be added to ensure
definiteness in the result.

The weakness of this rule is that it follows all combinations
equally far. It would be much better if the more profitable moves
were considered in greater detail than the less. It would also be
desirable to take into account more than mere ‘““value of material.”

After this introduction I shall describe a particular set of rules,
which could without difficulty be made into a machine programme.
It is understood that the machine is white and that white is next to
play. The current position is called the position on the board, and the
positions arising from it by later moves positions in the analysis.

“CloNSIDERABLE” MoOVES

“Considerable” here is taken to mean moves which will be
“considered” in the analysis by the machine.

Every possibility for white’s next move and for black’s reply is
“considerable.” If a capture is considerable then any recapture is
considerable. The capture of an undefended piece or the capture of
a piece of higher value by one of lower value is always considerable.
A move giving checkmate is considerable.

Deap Position

A position in the analysis is dead if there are no considerable
moves in that position, i.e. if it is more than two moves ahead of the
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present position, and no capture or recapture or mate can be made
in the next move.

VaLue or Position

The value of a dead position is obtained by adding up the piece
values as above, and forming the ratio W/[B of white’s total to
black’s. In other positions with white to play the value is the
greatest value of (@) the positions obtained by considerable moves, or
(b) the position itself evaluated as if a dead position. The latter
alternative is to be omitted if all moves are considerable. The same
process is to be undertaken for one of black’s moves, but the machine
will then choose the least value.

Position-Pr.AY VALUE

Each white piece has a certain position-play contribution and so
has the black king. These must all be added up to give the position-
play value,.

For a Q, R, B, or Kt, count—

(a) The square root of the number of moves the piece can make
from the position, counting a capture as two moves, and not for-
getting that the king must not be left in check.

(6) (If not a Q) 10 if it is defended, and an additional o-5 if
twice defended.

For a K, count—

(¢) For moves other than castling as (a) above.

(d) It is then necessary to make some allowance for the vulner-
ability of the K. This can be done by assuming it to be replaced by a
friendly Q on the same square, estimating as in (), but subtracting
instead of adding.

(¢) Count 1-0 for the possibility of castling later not being lost by
moves of K or rooks, a further 1-0 if castling could take place on the
next move, and yet another 1-0 for the actual performance of castling.

For a P, count—

(f) o2 for each rank advanced.

(g) 03 for being defended by at least one piece (not P).

For the black K, count—

(k) 1-0 for the threat of checkmate.

(t) o-5 for check.

We can now state the rule for play as follows. The move chosen
must have the greatest possible value, and, consistent with this, the
greatest possible position-play value. If this condition admits of
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several solutions a choice may be made at random, or according to
an arbitrary additional condition.

Note that no “analysis™ is involved in position-play evaluation.
This is to reduce the amount of work done on deciding the move.

The game below was played between this machine and a weak
player who did not know the system. To simplify the calculations
the square roots were rounded off to one decimal place, i.e. this
table was used—

MNbtabar, LI SN e W LB T @l UgE | 516 Ll g iigeigal Yy sty
Square Root . 0T N sgorsy 2tetiane . 2k ek a8l g0l e gia i gER) ovh

No random choices actually arose in this game. The increase of
position-play value is given after white’s move if relevant. An
asterisk indicates that every other move had a lower position-play
value.

White ( Machine) Black
1. P—K 4 42% P—Kg4
2. Kt—QB3 31* Kt—KBjg
3. P—Q 4 2:6* B—QKtj
4. K—KBg® 20 P—Q3g
5. B—Q2o 35* Ki—QBg
6. P—Q 5 oz Kit—Qsps
7. P—K R 4® 1-1* B—Ktj
8. P-OQR4® 1.0 KtxKtch.
9. PxKt B—KRy
10. B—Ktgch. a4* P—QB3
6 I 0—0
12. PXP R—Kit1
13. B—R 6 —15 OQ—Rg4
14. Q—K 2 0ob Kt—Q2
15 KR—Kt1® 1.9% Kt—Bg4W
16. R—Kt 5 B—Ktsg
17. B—Kt5 04 KtxKtP
18, O—0—0 g2% Kt—B
1. B—B6 KR—QB1
20. B—Q 5 Bx Kt
21, BxB 07 QxP
22, K—Q 2 Ki—K 3
23. R—Kt4 —03 Kit—Qs5
24. Q—Q 3 Kt—Kt 4
25. B—Kt 3 Q—R3
26. B—B 4 B—R 4
27. R—Kt3 Q—R 5
28 Q

Notes—
. IfB—Q 2 3-7* then P P is foreseen.

. Most inappropriate moves.

If white castles then Bx Kt, BxB, Q x P,

. The fork is unforeseen at white’s last move.
. Heads in the sand!

. Fiddling while Rome burns!

. On the advice of his trainer.

1 SR R
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Numerous criticisms of the machine’s play may be made. It is
quite defenceless against forks, although it may be able to see certain
other kinds of combination. It is of course not difficult to devise
improvements of the programme so that these simple forks are fore-
seen. The reader may be able to think of some such improvements
for himself. Since no claim is made that the above rule is particularly
good, I have been content to leave this flaw without remedy;
clearly a line has to be drawn between the flaws which one will
attempt to eliminate and those which must be accepted as a risk.
Another criticism is that the scheme proposed, although reasonable
in the middle game, is futile in the end game. The change-over from
the middle game to the end-game is usually sufficiently clear-cut for
it to be possible to have an entirely different system for the end-game.
This should of course include quite definite programmes for the
standard situations, such as mate with rook and king, or king and
pawn against king. There is no intention to discuss the end-game
further here.

If I were to sum up the weakness of the above system in a few
words I would describe it as a caricature of my own play. It was in
fact based on an introspective analysis of my thought processes when
playing, with considerable simplifications. It makes oversights
which are very similar to those which I make myself, and which
may in both cases be ascribed to the considerable moves being
inappropriately chosen. This fact might be regarded as supporting
the glib view which is often expressed, to the effect that “one
cannot programme a machine to play a better game than one plays
oneself.” This statement should I think be compared with another
of rather similar form. “No animal can swallow an animal heavier
than himself.” Both statements are, as far as I know, untrue. They
are also both of a kind that one is easily bluffed into accepting,
partly because one thinks that there ought to be some slick way
of demonstrating them, and one does not like to admit that one
does not see what this argument is, They are also both supported by
normal. experience, and nced exceptional cases to falsify them.
I"hc statement about chess programming may be falsified quite
simply by the speed of the machine, which might make it feasible to
carry the analysis a move farther than a man could do in the
same time. This effect is less than might be supposed. Although
electronic computers are very fast where conventional computing is
concerned, their advantage is much reduced where enumeration of
cases, etc., is involved on a large scale. Take for instance the problem
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of counting the possible moves from a given position in chess. If the
number is 30 a man might do it in 45 seconds and the machine in
1 second. The machine has still an advantage, but it is much less
overwhelming than it would be for instance when calculating cosines.

In connexion with the question of the ability of a chess-
machine to profit from experience, one can see that it would be
quite possible to programme the machine to try out variations in its
method of play (e.g. variations in piece value) and adopt the one
giving the most satisfactory results. This could certainly be des-
cribed as “learning,” though it is not quite representative of
learning as we know it. It might also be possible to programme the
machine to search for new types of combination in chess. If this
project produced results which were quite new, and also interesting
to the programmer, who should have the credit? Compare this with
the situation where a Defence Minister gives orders for research

- to be done to find a counter to the bow and arrow. Should the in-

ventor of the shield have the credit, or should the Defence Minister ?

TaE MANCHESTER UNIVERSITY MACHINE

In November, 1951, some months after this article was written
(by Dr. Turing) Dr. Prinz was able to make the Manchester Uni-
versity machine solve a few straightforward chess problems of the
“Mate-in-Two” type (see Research, Vol. 6 (1952), p. 261).

It is usually true to say that the best and often the only way to see
how well the machine can tackle a particular type of problem is to
produce a definite programme for the machine, and, in this case, in
order to have something working in the shortest possible time, a few
restrictions were imposed on the rules of chess as they were “ex-
plained” to the machine. For example castling was not permitted,
nor were double moves by pawns, nor taking en passant nor the
promotion of a pawn into a piece when it reached the last row;
further, no distinction was made between mate and stalemate.

The programme contained a routine for the construction of the
next possible move, a routine to check this move for legality, and
various sequences for recording the moves and the positions obtained.
All these separate subroutines were linked together by a master
routine which reflected the structure of the problem as a whole and
ensured that the subroutines were entered in the proper sequence.

The technique of programming was perhaps rather crude, and
many refinements, increasing the speed of operation, are doubtless
possible. For this reason, the results reported here can only serve as
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a very rough guide to the speed attainable; but they do show the
need for considerable improvement in programming technique and
machine performance before a successful game by a machine
against a human chess player becomes a practical possibility.

The programme, as well as the initial position on the chess board,
was supplied to the machine on punched tape and then transferred
to the magnetic store of the machine.

A initial routine (sub-programme) was transferred to the
electronic store, and the machine started its computation. The
programme was so organized that every first move by white was
printed out; after the key move had been reached the machine
printed: “MATE.”

The main result of the experiment was that the machine is
disappointingly slow when playing chess—in contrast to the extreme
superiority over human computers where purely mathematical
problems are concerned. For the simple example given in the
position reproduced here, 15 minutes were needed to print the
solution. A detailed analysis shows that the machine tried about
450 possible moves (of which about 100 were illegal) in the course of
the game; this means about two seconds per move on the average.

A considerable portion of this time had to be used for a test for
self-check (i.e. after a player had made a move, to find out whether
his own King was left in check). This was done by first examining all
squares connected to the King’s square by a Knight’s move, to see
a) whether they were on the board at all, (6) whether they were
empty or occupied, (¢) if occupied, by a piece of which colour and
(d) if occupied by a piece of opposite colour, whether or not this
piece was a Knight. A similar test had to be carried out for any
other piece that might have put the King in check. This test involves
several hundreds of operations and, at a machine speed of 1 msec
per operation, might take an appreciable fraction of a second.

The next important time-consuming factor was the magnetic
transfers, i.e. the transfers of sub-programmes and data (relating to
positions and moves) between the magnetic and the electronic store.
It is here that improved programming technique may save time by
better utilization of the electronic store, thus reducing the number of
transfers (nine for every legal move in the present programme).

Compared with these two items, the time spent in computing the
moves appeared to be of minor importance although the machine
not only computed the possible moves but also the impossible, but
“thinkable” moves—meaning those which either carry the piece off
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the board, or lead to a collision with a pieceof the same CC:\IOUI already
on the square. These moves, however, were quickly rqccte:d b?f the
machine and did not contribute greatly to the total computation time.

It appears that if this crude method of pr_ogramming were 1.;he
only one available it would be quite impractical for any ma-chme
to compete on reasonable terms with a competent l:mman being.

Before we conclude too easily that no computer will ever compete
in a Masters’ Tournament let us remind ourselves that the M::m-
chester machine solved a problem after a few weeks tuition, which
represents quite reasonable progress for a beginner..

The First Chess Problem Solved by a Computing Machine. The task set
the Manchester machine was to find a move by white that would
lead to a mate in the next move, whatever black might answer.

The move is R—RG6.

81
71

61

sty

4 %
31 %

For solution of the problem by the machine the squares of the
board were numbered in rather unusual fashion. The bottom row
was numbered 11 to 18 (from left to right), the next 21 to 28, and so
on to the top row, which was 81-88. Square 68 was thus the square
in row 6, column 8. The machine has printed out all the moves
which white tried out to find a solution, and has printed “1'\1ATE”
after finding and recording the key move, which appears in the
form “Rook to 68.”

The list of moves is—

Pawn to 78. Rook to 11.
Rook to 17. Rook to 28.
Rook to 16. Rook to 38.
Rook to 15. Rook to 48.
Rook to 14. Rook to 58.
Rook to 13. Rook to 68.
Rook to 12. MATE.
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DRAUGHTS

The game of draughts occupies an intermediate position between
the extremely complex games such as chess, and the relatively
simple games such as nim or noughts-and-crosses for which a com-
plete mathematical theory exists. This fact makes it a rather suitable
subject for experiments in mechanical game playing, for although
there is no complete theory of the game available, so that the machine
has to look ahead to find the moves, the moves themselves are rather
simple and relatively few in number.

Various forms of strategy have been suggested for constructing
an automatic chess player; the purpose of such plans is to reduce the
time taken by the machine to choose its move. As Prinz has shown,
the time taken by any machine which considers all the possible moves
for four or five steps ahead would be quite prohibitive, and the
principal aim of the strategy is to reduce this number very consider-
ably, while at the same time introducing a scheme of valuing the
positions which will allow it to choose a reasonably good move. The
chief interest in games-playing machines lies in the development of a
suitable strategy.

Before any strategy can be realized in practice, however, the
basic programme necessary to find the possible moves and to make
them must be constructed. When this has been done the strategy,
which consists principally of the methods by which positions can be
valued, can be added to make the complete game player. It is
obviously possible to make experiments with different strategies
using the same basic move-finding-and-making routine.

The basic programme for draughts, which is described in outline
in the following paragraphs, is very much simpler than the corres-
ponding one for chess. It has in fact proved possible to put both it
and the necessary position storage in the electronic store of the
Manchester machine at the same time. This removes the need for
magnetic transfers during the operation of the programme, and
this fact, together with the simplicity of the moves, has reduced
the time taken to consider a single move to about one tenth of a
second.

Basic ProGrAMME FOR DRAUGHTS

We must first consider the representation of a position in the
machine. The 32 squares used in a draughts board are numbered as
shown in the diagram.
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A position is represented by g thirty-two-digit binary numbers
(or words) B, W and K which give the positions of the black men
(and kings), the white men (and kings) and the kings (of either
colour) respectively. The digits of these words each represent a
square on the board; the square n being represented by the digit 2".

Thus the least significant digit represents square o and the most
significant digit represents square 1. (In the Manchester machine,
where the word length is 40 digits, the last 8 digits are irrelevant).
A unit in the word indicates the presence, and a zero indicates the
absence of the appropriate type of man in the corresponding square.
Thus the opening position of the game would be represented by*—

B = 1111, 1111, 1111, 0000, 0000, 0000, 0000, 0000
W = 0000, 0000, 0000, 0000, 0000, T111, TIT1, IIII
K = 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000

The positions of the white kings are indicated by the word
W& K, while the empty squares are indicated by the word~W& ~B. 1
It will be seen that there are at most four possible types of non-
capture moves from any square on the board. For example, from
square 14 the possible moves are to squares g, 10, 17 or 18. The
machine considers all these moves in turn, but it will be sufficient to
indicate here the way in which it deals with one of them—say the
move 14-18.
* All binary numbers are written in the convention used for the Manchester machine,
i.e. with their least significant digit on the left.
t W&XK stands for the logical product of W and K (sometimes also known as the

result of collating W and K). ~W stands for the negation of W, i.e. the word obtained
by writing 1’s for 0’s in W, and vice versa (see Chapter 15).
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This type of move, which consists of adding 4 to the number of
the square, corresponds to multiplying the appropriate digit in the
position word by 2%, A move of this type can be made by any black
man, but only by a white king; it cannot be made from squares
28, 29, 30 or 31 nor can it be made unless the square to which the
man is to be moved is empty. For a black move, the machine there-
fore forms the following quantity—

¥ = {(B&M) X 2% & ~W&~B

where M = 1111, 11171, 1111, 1111, 11101, 1111, 1111, OOOO
For a white move, the corresponding quantity is—

(W&E&M) x 2% &~W&~B

In these expressions (B& M) or (W& K& M) give all the men on
the board who could make the move; multiplying this by 2% give
the squares to which they would move. If these squares are empty
(collate with ~W& ~B) the move is possible.

The quantity ¥ thus represents all the possible moves of this type.
To consider a single one of these, the largest non-zero digit of 1" is
taken and removed from 1. The word consisting of this single digit
known as 0, gives the square to which the man is moved. The
quantity ¢ = 0 x 2-1is then formed and gives the square from which
the man was moved. For a black move, the quantity—

B=B#0#£¢

will then give the new position of the black men. If K&4 is not zero,
the man moved was a king so that k' = K # 0 # ¢ gives the new
position of the kings. If K&d¢ is zero, the man moved was not a
king. The new position of the kings will therefore be unaltered
unless the man has kinged during this move—in other words unless
0 > 22 in which case K’ = K # 0.

Relatively simple modifications of this scheme are needed to
deal with white moves and non-capture moves of other types.
Capture moves are somewhat more complicated as multiple captures
must be allowed for. Furthermore, all the possible captures must
be made or the machine will render itself liable to be huffed. This
leads to a considerable complication which it is not possible to
describe fully here, but the basic scheme is not altered.

The machine considers all the possible moves of one type before
starting the next, so that in order to describe a position fully, it is
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necessary to store the word ¥, which indicates the moves still to be
considered, as well as the position words B, W and K. It is also
necessary to keep a record of the type of move being considered. This
is done with the aid of a further parameter word P which also con-
tains the value associated with the position. The whole storage
required for a position is thus reduced to the 5 thirty-two-digit words
B, W, K, ¥, and P.

VALUATION OF POSITIONS AND STRATEGY

It should be possible to graft almost any type of strategy on to
the move-finding scheme outlined above to produce a complete
draughts-playing routine and then to evaluate the effectiveness of
the strategy by direct experiment. I have done this with two rather
simple types of strategy so far, and I hope to be able to try some
rather more refined strategies in the future.

For demonstration purposes, and also to ensure that a record of
the game is kept, and to take certain precautions against machine
error, the move-finding sequence and the associated strategy have
been combined with a general game-playing routine which accepts
the opponent’s moves, displays the positions, prints the move, and
generally organizes the sequence of operations in the game. It is
rather typical of logical programmes that this organizing routine
is in fact longer than the game-playing routine proper. As its
operations, though rather spectacular, are of only trivial theoretical
interest, I shall not describe them here.

The first, and simplest, strategy to try is the direct one of allowing
the machine to consider all the possible moves ahead on both sides
for a specified number of stages. It then makes its choice, valuing
the final resulting positions only in terms of the material left on the
board and ignoring any positional advantage. There is an upper
limit to the number of stages ahead that can be considered owing
to limitations of storage space—actually six moves, three on each
side, are all that can be allowed. In practice, however, time consid-
erations provide a more severe limitation. There are on an average
about ten possible legal moves at each stage of the game, so that
consideration of one further stage multiplies the time for making
the move by a factor of about ten. The machine considers moves
at the rate of about ten a second, so that looking three moves ahead
(two of its own and one of its opponents), which takes between one
and two minutes, represents about the limit which can be allowed
from the point of view of time.

a21—(T.725)
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This is not sufficient to allow the machine to play well, though it
can play fairly sensibly for most of the game. One wholly unexpected
difficulty appears. Consider the position on the following board.

BLACK

WHITE

In this position, the machine is aware that its opponent is going
to king next move. Now a king is more valuable than a man—the
actual values used were three for a king and one for a man—so
that if the opponent kings the machine effectively loses two points.
The only way it can stop this is by offering a man for sacrifice,
because then, by the rules of the game, the sacrifice must be taken
at once. If the machine does this, it will lose only one point, and as
it is not looking far enough ahead, it cannot see that it has not
prevented its opponent from kinging but only postponed the evil
day. At its next move it is still faced with the same difficulty, which
it tries to solve in the same way, so that it will make every possible
sacrifice of a single man before it accepts as inevitable the creation
of an opponent’s king. In fact, when faced with this position, the
machine played 19—a23, followed by 16—21 and 20—a24.

This, of course, is a fatal flaw in the strategy—and not one it
would have been easy to discover without actually trying it out.
An opponent who detected this behaviour—and it is extremely
conspicuous in play—would only have to leave his man on the point
of kinging indefinitely. The machine would then sacrifice all its
remaining men as soon as the opportunity offered.

In order to avoid this difficulty, the second strategy was devised.
In this the machine continues to investigate the moves ahead until
it has found two consecutive moves without captures. This means
that it will be able to recognize the futility of its sacrifice to prevent
kinging. It is still necessary to impose an over-riding limit on the
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number of stages it can consider, and once more, considerations of
time limit this. However, as no move is continued for more than
two stages unless it leads to a capture, it is possible to allow the
machine to consider up to four stages ahead without it becoming
intolerably slow. This would mean that it would consider the
sacrifice of two men to be of equal value to the creation of an

Machine Strachey
I. 11—15 23—18
2. g:n zz—-xgm
. 12 20—1
i. 12—21(16) 25—16(21)
5 g—I14l® 18—g(14)
6. 6—=20(16,9)® 27—=23
g. 23?“’ 2!3;:18
. I I
9. g—-zg“’ 17—8(13)
10. 4—1?(8) 14—9
1. 1—5®
12. 15—I9 6—1 K
13. 5—9 1—62(M
14. 0—5l® 6—15(:0}
15. 11—25(22,15) go—21(25
16. 13—:;( ) 21—;4(17)
17. 9—18(14 24—21
18, 18—23 26—22
- 2 22—1
;g. 23:83” 17—11
21. 8—13 14—9
22, 1g—2 9—b6
23, 23—2 ‘;2 3[—221((26)
24. 27—31 6—=z
25. 7—I0 2—
26. 10—15 21—16201
%-3~mw) 16—9(13)
28. 10—14 g—b
29. 15—19 6—2 K
g0. gr—a742 2—b6
g1. 27—310% 6—10
32. 31—264% i 10—17(14)
. 26—2
" B i, e
otes—

1. An experiment on my part—the only deliberate offer I made. I thought,
wrongly, that it was quite safe.
2. Not foreseen by me.
. Better than 5—21(9,17). ,
A random move (zero value). Shows the lack of a constructive plan.
. Another random move of zero value, actually rather good.
Bad. Ultimately allows me to make a King.  10—14 would have been better.
. A bad slip on my part. ;
Taking full advantage of my slip.
Bad. Unblocks the way to a King. e
10. Sacrifice in order to get a King (not to stop me kinging). A good move, but not
possible before 19—23 had been made by chance.
11. Another bad slip on my part. >
12. Purposeless. The strategy is failing badly in the end game.
13. Too late. o i
14. Futile. The game was stopped at this point as the outcome was obvious.

© gy SR
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opponent’s king, and as there is a random choice between moves of

equal value, it might still make this useless sacrifice. This has been
prevented by reducing the value of a king from 3 to 2.

With this modified strategy, the machine can play quite a toler-
able game until it reaches the end game. It has always seemed
probable that a wholly different strategy will be necessary for end
games. The game given on page 303, which is the first ever played
using the strategy, brings this point out very clearly.

NIM

A considerably easier game which the machine can be programmed
to play is the one known as nim. Probably a variation of this was
known to the Chinese—certainly in its present form many people
have met it. We have chosen to deal with this comparatively trivial
game in detail because of its topical interest. Thousands of people
will have seen Nimrod, the computer built by Ferranti Ltd. for the
Science Exhibition of the Festival of Britain. This special-purpose
machine was designed to show the main features of large electronic
digital computers, and the game of nim was chosen as an interesting
but simple demonstration problem. The game itself is as follows—

Initially we have any number of heaps, each containing any
number of tokens (usually matches). In the simplest form, two con-
testants play alternately, and may pick up as many matches as they
wish at one time from one pile, but they must take at least one match.
The aim is to avoid taking the last match of all—or there is another
variation where the aim is to take the last match or group of matches.

The so-called multiple game differs from this only in that the
number of heaps altered in any move may take any value from one
up to a pre-assigned maximum k. Of course, to prevent complete
triviality, £ must be less than W, the total number of heaps.

The detailed theory of nim was worked out long ago and, apart
from the initial distribution of the matches, no element of chance
need enter into the game. This theory is very simple, but it becomes
clearer for the non-mathematician if we use the concept of a binary
number, introduced elsewhere (see page 33).

We can now proceed to give a working rule for the game of nim.
We would like to find a winning position having the following
characteristics—

(a) It is impossible, when faced by a winning position, to make
a move which will leave a winning position.
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(b) Faced with any other than a winning position, it is possible
to make a move resulting in a winning position. g

(¢) If at any stage of the game a player 4 can convert a position
into a winning position, it is possible for 4 to win, and 1mp?551blc
for his opponent B to do so unless 4 makes a mistake. A wins by
leaving a winning position at every succeeding move on his part.

Such winning positions can be achieved and are recognized as
follows: For any given configuration, express the number of matches
in each heap as a binary number. Suppose, for example, that we
have four heaps, 4, B, C and D, containing respectively 7, 4, 3 and 2
matches. These are represented—

4 2 I

Y Pore : P
B 1 [} o (4)

c 0 1 1 (3)

D 0 1 ] (2)

We write these down as above, one under the other, and add up

each column, e.g., in the above example, we get
4 2 1
Sum: 2 3 &

Now the “secret” of a winning position is that every column
should be divisible by £ + 1; & being the maximum number of
heaps which can be altered in any one move. Thus the example
quoted above cannot represent a winning position whatever our
initial choice of k. However, suppose we have £ = 1; then consider
the position—

4 2 1
A 1 o 1 (5)
B 1 1 1 (7)
c o 1 1 (3)
D o 0 1 (1)
Sum: 2 2 4

This is a winning position, but would not be so if we had previously
fixed k£ = 3, for example.
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To convert an “unsafe” into a winning position, we deal with a
column at a time. Consider our previous example with & = 1.

4 2 1
P | 1 1 I (7
B 1 o 0 (4)
¢ | o : P
D o I 0 (2)
Sum: 2 3 2

We start with the “most-significant,” or left-hand column. This sum
is divisible by £ 4 1, so we proceed to consideration of the next
column. The sum here is 3, which is not divisible by k£ 4 1, so we
ch_oose any heap, say D, having a one in this column. We remove
this 1 (which is equivalent to subtracting 2 from D), and put 1 in
every less-_signiﬁcant (or right-hand) column of this heap (which in
this case is equivalent to adding 1, though if we had chosen to
modlfy A instead, it would have meant no change in the last column).
'E‘hat 1s, we make the minimum move which removes the 1 in the

unsafe” cqlumn. Thus we remove 1 from D, and so alter its binary
representation to oor,

Now our representation is—

4 2 1
4 1 I 1 ©)
B 1 o o (4)
c 9 1 1 (3)
D o o 1 (1)
Sum: 2 2 3

and we see that we have made the sum of column 2 divisible by
k+ I at the expense of column 1. However, we shall now proceed
to adjust column 1. To avoid altering more than & heaps in one
move, we must alter one or more of the heaps already affected if
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by so doing, we can achieve the desired result, rather than select a
fresh heap.

Now, in this case, we wish to remove 1 from column 1 of some
heap. Since heap D has already been altered, we choose this—it
has a 1 in this column.

So, at the end of our move, we have removed two matches from
heap D, and leave the winning position—

4 2 2
A 1 1 1 (b))
B 1 o o (4)
C [} 1 1 (3)
D o o 0 (0)
Sum: 2 2 2

In adapting this game for the universal computer, we allow a
maximum of eight heaps, with not more than thirty-one matchesin a
heap. In Nimrod the more stringent restrictions to four heaps, each
with a maximum content of seven matches, were applied to simplify
the problems of demonstration.

Possible positions with which the machine may be faced are as
follows—

(a) Atleast k + 1 heaps contain more than one match.

(6) The number of heaps containing more than one match lies
between 1 and £ (inclusive).

(¢) No heap contains more than one match. Not all heaps are
empty.

(d) All heaps are empty.

In case (a), we follow the so-called normal routine, which aims at
leaving column sums all divisible by (k£ + 1).

In case (b), we want to leave r (kK + 1) + 1 heaps containing
one match, and no heaps with more than one, where r may have any
non-negative integral value (i.e. 7 =0, 1, 2, . . .).

In case (¢) the same applies.- If only one heap is left, containing
one match, we have no choice of move, but this need not be treated
separately.

In case (d), the game is over. Special investigation has to be
used to detect this case. In all other cases, if the normal routine
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cannot succeed in its purpose, i.e. if the machine is faced with a
yvmn_ing position—a random move can, and must, be made. But,
in this situation, this obviously cannot be done.

Thus the routine breaks up naturally into the following parts—

(i) Entry
(ii) Determination of case
(iii) Normal Routine
(iv) Cases () and (¢)
(v) Treatment of zero case (d)
(vi) Random move
(vii) Emergence,

Thcrc' is no need to give further details of the programme, but an
example is given of how the machine would tackle a specific game.
Suppose initially that we have four heaps, containing respectively

i',;,r 4, 5 and 2 matches; that £ = 2; and that the machine moves
st.

(i) Entry—
4 2 1
4 1 1 I (7)
2 X ° 0 (4)
¢ I o X (5)
D o 1 o (2)

(ii) Determination of case—

There are 4 non-zero, non-unit heaps, so we are dealing with
case (a).

(iii) Normal routine—

4 B 1
AT Ty 1 1 (7)
= : o o ()
¢ 1 ° 1 (s)
D o 1 o (2)
Sum: g3 2 2
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The sum of column 4 is divisible by £ 4+ 1 so we need not modify
it.

The sum of column 2 is 2, and is not divisible by £ 4 1,
so we need to modify any heap having a 1 in this column—say
heap 4.

According to the rules, we then get—

4 2 2
A 1 0 1 (5)
B 1 o o (4)
C 1 o 1 (5)
D o 1 o (2)
Sum: g 1 2

And we note that heap 4 has been modified, and should be again
modified whenever possible. Sum of column 2 is still not divisible
by k -+ 1, so this time we modify heap D to obtain—

4 2 :
A 1 0 I (5)
B I 0 Y (4)
a 1 0 1 (5)
D 0 o 1 (1)
Sum: 3 0 3

Column 2 is now divisible by £ + 1 and, proceeding to the next
column, we see this condition is also satisfied here, so the move has
been completed and a winning-position left, the means to this end
being the removal of two matches from 4, and one from D, leaving
5, 4, 5 and 1. (If column 1 had needed adjustment, we should have
had to modify one or both of heaps 4 and D, since these had already
been affected.)

Suppose the opponent now makes a move leaving o, 4, 2 and 1 as
the contents of the respective heaps. It is now for the machine to
move again.
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(i) Entry—
4 b 1
4 o o 1 (0)
B X ° ° (4)
¢ o I o (2)
D o o 1 (1)

(ii) Determination of case.

There are 3 non-zero, non-unit heaps, so we are dealing with
case (b). Thus we want to leave 1, or 4, or 7 . . . unit-heaps.
Clearly we can only leave 1 unit heap in this case.

(iv) Cases () and (c).

We remove all matches from heaps B and D, which affects only
k heaps, and leaves just one unit heap as required.

The opponent is now forced to remove the last match, and the
machine wins the game.

-

Chapter 26
THOUGHT AND MACHINE PROCESSES

Cbgim, ergo sum—IDESCARTES
I do not think, therefore I am not—Dr. StraBismus (whom God
preserve) of Utrecht. President of the Anti-cartesian Society

So FAR WE HAVE DESCRIBED the construction of these new digital
computers, and tried to show how useful they can become by doing
routine computations. If we are to complete the story we must also
try to assess the limitations of the machines which we can build
today, and, if possible, to discuss any limits to the performance of
machines which may be built in the future. We shall try to compare

- the processes which go on inside them with those which are respon-

sible for the thoughts in our own minds. This subject is far too
complicated to be dealt with in a single chapter, but we shall try to
describe some of its more important aspects. We shall begin by
giving an account of some of the astonishing feats of mental arith-
metic which are demonstrated by those rare individuals who are
known as “calculating prodigies.” Many accounts of these men
have appeared, of which one of the best known is to be found in
W. W. R. Ball’s book,* to which the reader is referred for a com-
prehensive historical account of the subject.

At rare intervals there have appeared men and boys who display
extraordinary powers of mental arithmetic. In a few seconds they
can give the answer to questions which an expert mathematician
could obtain only in a much longer time with the aid of pencil and
paper. Some of them have remained otherwise illiterate; others,
such as Gauss, Ampére, and Bidder, have risen to positions of
eminence as mathematicians, physicists, or engineers. Many of
them seem to have taught themselves the rules of arithmetic in their
childhood, and to have learnt the multiplication table by playing
with pebbles. Few of these prodigies have been able to explain in
detail how they achieve their apparently miraculous results, but
two of the most remarkable of them have been kind enough to discuss
their methods with us. We are therefore much indebted to Dr.
A. C. Aitken, F.R.S., Professor of Mathematics in Edinburgh

* Mathematical Recreations and Essays. See also Common Sense and Its Cultivation, by
Hanbury Hankin, and Mental Prodigies, by Fred Barlow.
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