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Description Logics in Data Management 
Alexander Borgida 

Abstract-Description logics and reasoners, which are descen- 
dants of the KL-ONE language, have been studied in depth in Arti- 
ficial Intelligence. After a brief introduction, we survey in this 
paper their application to the problems of information manage- 
ment, using the framework of an abstract information server 
equipped with several operations-each involving one or more 
languages. Specifically, we indicate how one can achieve en- 
hanced access to data and knowledge by using descriptions in 
languages for schema design and integration, queries, answers, 
updates, rules, and constraints. 

Index Terms-Description, concept, terminological, language, 
subsumption, knowledge representation, object-oriented schema, 
intension. 

I. INTRODUCTION 

LARGE class of practical computer applications requires A managing a symbolic model of an application world, 
which is updated or queried by users. Many such systems start 
with the intuition that for describing some situation, it is useful 
to think of various kinds of individuals, e.g., C a l c u l u s 1 0 0 ,  
Gauss ,  related by relationskips, e.g., t augh tBy ,  and 
grouped into classes, e.g., COURSE, TEACHER, STUDENT. 
This intuition is shared by formalisms such as semantic data 
models, object-oriented databases, and semantic networks. 
Such formalisms support languages for declaring classes of 
individuals, using a syntax somewhat resembling the following 
example: 

class ADVANCED-COURSE is-a COURSE w i t h  
takers [0,401: G R A D S  

. . .  
Such a declaration is intended to express necessary conditions 
that must be met by each instance of the class. For example, in 
the above case every instance of ADVANCED COURSE must 
also be an instance of class COURSE, and t h e t a k e s s  attrib- 
ute must relate to it between 0 and 40 individuals, themselves 
instances of class GRADS. Class definitions are used to detect 
errors, or as a template for data storage decisions, i.e., as a 
type declaration in standard programming languages. 

The subject of this paper is yet another family of formal- 
isms-description logics (DLstwhich are currently enjoying 
a surge of interest both as objects of theoretical study and as 
tools used in applications, including ones in industry. 

A. Description Languages 

The fundamental observation underlying DLs is that there is 
a benefit to be gained if languages for talking about classes of 
individuals yield structured objects that can be reasoned with. 
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Fig. 1 contains an example of a typical compositional descrip- 
tion, expressed in the CLASSIC language [17]. Its intended 
reading would be “Courses with at most 10 takers, all takers 
being instances of GRADS”. In this description, COURSE and 
GRADS are identifiers for concepts introduced elsewhere, 
while t a k e r s  is the name of a binary relation, intended to 
relate courses to students taking them. There are several things 
one can do with such a description, including: 

Reasoning about the relationship of one description to 
another, treating them as “intensional” objects. For ex- 
ample, the description in Fig. 1 is subsumed by (entails) 
the description (and COURSE , (at-most 15 t a k e r s ) )  
since everything with at most I O  fillers for some role, 
also has at most 15 fillers for it. On the other hand, the 
description (at-least 12 t a k e r s )  can be inferred to be 
disjoint from the one in Fig. 1, because the required 
number of fillers are in conflict. 
Recognizing those individuals that satisfy the description, 
based on what is currently known about them. For ex- 
ample, suppose AI100 is an individual object in the 
knowledge base, and it is known to be an instance of the 
concept COURSE; in addition, the fillers for the t a k e r s  
role for AI100 are individuals C a l v i n  and Hobbes, 
both of which are instances of GRADS. Then AI100 is 
inferred to be an instance of the description in Fig. 1, 
since all the necessary and sufficient conditions of that 
concept are satisfied. 

(and 
COURSE , 
(at-most 10 takers) , 
(all takers GRADS) ) 

Fig. 1. Compositional concept in CLASSIC. 

As a possible clarification of the issues involved, we pro- 
vide an analogy for those familiar with logic programming.’ 
Since descriptions denote concepts or relationships, it is natu- 
ral to take their analogues in logic to be ordinary unary or bi- 
nary predicates. Consider the following knowledge base of 
Horn clauses: 

ParentOf ( l i z ,  andy) . 
Child(_x) :- ParentOf (-z,-x) . 
Son (-y) : - Male (-y) , ParentOf (-w, -y) . ) 

Male (andy) . 

Normally, such a system is used to deduce new properties of 
individuals, e.g., whether the Son predicate “recognizes” the 
individual andy.  On the other hand, we might want to reason 
entirely from intensional information-the rules-ignoring 
ground facts. For example, we might be interested in whether 
C h i l d  (-x) is implied by (“subsumes”) Son (-x). Note that 

1.  This analogy extends an example found in [46] 
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although we cannot express this question in Prolog, theoreti- 
cally the answer would be “yes,” because the last two clauses 
are in fact treated as the following definitions 

Child(x) e (32) PurentOAz,x) 
Sonb) w (3w) Muleb) A PurentOj(w,y) 

special languages obtained by term composition. All DLs have 
(at least) two sorts of terms: concepts (intuitively, denoting 
collections of individuals), and roles (intuitively denoting re- 
lationships between individuals); because functional relation- 
ships occur very frequently, such roles are often distinguished, 
and will be called attributes in this paper. Therefore the syntax 
of DLs consists of rules for creating composite terms from 
atomic/primitive symbols-identifiers of various sorts-and 
term constructors. For example, suppose prim is considered to 

primitive concept, and suppose all and atmost are also con- 
cept constructors, then the following term 

by the semantics of predicate completion in Prolog. However, 
if we took seriously the rule for Son as its definition, then 
asserting Son(f red) ought to allow us to deduce that 
Child(fred)-a deduction not made in cunent logic pro- 

the trademark of description logics. 
g r m i n g  systems. It is such reasoning with definitions that is be a concept term constructor, whose argument identifies a 

B. Outline 
For readers familiar with database management,2 the paper 

provides a tutorial and survey of how descriptions and their 
reasoners can enhance the modeling power of the database 
(i.e., the kinds of knowledge about the world that can be 
stored), facilitate the user’s interaction with it, or support the 
development of databases. 

For readers conversant with Artificial Intelligence, DLs are 
descendants of the influential KL-ONE system [20], [21], and 
have been extensively studied under the name of 
“terminological logics.” The features and history of these 
logics have been surveyed recently in papers such as [66], 
[46]. Therefore our aim is to provide for this audience a novel, 
systematic look at the various uses to which DLs are being put 
for information management-a view considerably broader 
than that usually assumed in Artificial Intelligen~e.~ 

We begin by considering the syntax and semantics of de- 
scription languages, illustrating the kinds of reasoning they are 
especially suited for. Thereafter, we present a semi-formal 
view of an Information System as a “black box” with several 
operations, each of them involving one or more languages. By 
examining the possibility of using DLs for each of these lan- 
guages, we obtain a systematic survey of their utility. 

Throughout the paper we endeavor to summarize the key 
points as italicized observations. 

11. THE SYNTAX AND SEMANTICS OF DLS 

Although the original KL-ONE system supported a graphical 
notation for representing definitions of concepts, all DLs since 
the KRYPTON system [23] provide a formal linear syntax for 
writing descriptions. To give the reader a sense of the syntactic 
variations in use, here are versions of the description in Fig. 1 
in the two other currently most widely used DLs, BACK [44] 
and LOOM [45], as well as an infix notation used in many theo- 
retical papers: 

COURSE and at-most( 10, takers) and all(takers, GRADS) 
(:and COURSE (:at-most 10 takers) (:all takers GRADS)) 
COURSE n 110 takers n Vtakers:GRADS 
As proposed by Ait-Kaci [l], it is useful to view DLs as 

2. Such readers are assumed to have elementary familiarity with proposi- 

3. For this purpose, some elementary familiarity with the functionality of 
tional and first order logic. 

relational databases is assumed. 

and(prim ( COURSE , 
at-most(20, t a k e r s )  , 
all ( t a u g h t B y ,  prim (PROFESSOR) ) ) 

is intended to denote those instances of the (primitive) concept 
COURSE which have at most 20 students taking them (at most 
20 fillers for the t ake r s  role), and are only taught by PRO- 
FESSORS. Suppose professors have a r a n k  role, whose pos- 
sible values are in the set { a P  , AP , P}, and suppose we wish 
to restrict the above description to include only courses taught 
by tenured professor-i.e., add a restriction that the composi- 
tion of t a u g h t B y  with r a n k  must be one of the values AP 
or P. This can be accomplished by adding an additional con- 
junct, built using concept constructor one-of, which takes as 
arguments an enumeration of values, and role constructor 
compose, which denotes role composition: 

all( compose(taughtBy,  r a n k )  , one-of (AP, P )  ) 

Table I contains a fairly comprehensive list of domain- 
independent description constructors, from [66], which were 
arrived at empirically, in efforts to express the meaning of 
natural language sentences and other Artificial Intelligence 
tasks. 

One can in fact view DLs as a logical notation where logical 
operators were chosen to facilitate the expression of fre- 
quently used conceptual structures, and related inferences. To 
highlight this point, consider the alternative of representing 
descriptions as unary and binary predicates in Predicate Calcu- 
lus. The formula, with free variable a, corresponding to the 
description example in this section is 

COURSE( a) 
A (3x, ... 3 ~ ~ ~ )  takers(wl) A ... A takers(wlo) 
A(X] #x2 A XI # x3 A ... A xi9 # x20) 
A Vr taughtBy(a,r) 3 PROFESSOR(r) 
A Vr Vy taughtBy( a,r) A rank(r8) 2 

0, = AP v y  = P) 

It is evident that the encoding in predicate logic is less perspi- 
cous, mostly due to the proliferation of variables and quantifi- 
ers. As a result, it is more difficult to represent information in 
this notation, and it is less readable for humans. It is also more 
difficult for theorem provers to recognize the subsets of the 
above sentences which are amenable to fast but special pur- 
pose reasoning, e.g., checking that at-least(2 5, t a k e r s )  
entails at-least(2 0 , t a k e r s )  is a matter of a single integer 
comparison for DL-based reasoners. An interesting distin- 
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guishing feature of the syntax of description languages is that 
they express such statements without introducing the notion of 
variable, scoping, and substitution. 

We summarize the preceding in the following observation: 
DLs provide languages for  building variable-jiree, composite 
terms from primitive identi3er-s using term constructors; these 
terms denote several sorts of things, including concepts (sets of 
individuals) and roles (relationships, which are usually bi- 
nary). 

TABLE I 
DOMAIN-INDEPENDENT DESCRIPTION CONSTRUCTORS 

1 TERM INTERPRETATION J 
1 TOP-CONCEPT A’ I 

NOTHING 

I TERM INTERPRETATION I 
1 TOP-ROLE A’ x Ax I 

A. The Logic of Descriptions 
We have seen above that an interpretation associates with 

every concept description an extent, just like the interpretation 
of a unary predicate in FOPC. There are a number of natural 
questions that one normally asks about a description D 

Is D coherent/consistent?: The answer is no if the deno- 
tation of D, D’, is empty for every possible relational 
structure I. 
Does D subsume C?: The answer is yes if the denotation 
of C is a subset of the denotation of D, C1 D‘, for every 
possible relational structure I. 
Are D and C mutually disjoint?: The answer is yes if 
C’ rl D’ = 0 for every possible relational structure I. 
Are D and C equivalent? The answer is yes if C’ = D’ for 
every possible relational structure I. 

The subsumption relationship, which corresponds to mate- 
rial implication between predicates and is symbolized by d, is 

usually considered the most basic one. This is because all DLs 
have concept constructors and and NOTHING (which denotes 
the inconsistent concept with empty extension), so that inco- 
herence can be detected by asking the question “D * 
NOTHING?”, while disjointness is answered by “and(C,D) * 
NOTHING?”, and equivalence (E) is mutual subsumption. 

In fact, the presence of and and NOTHING allows us to view 
the space of all descriptions (actually, this space modulo the 5 

relation), partially ordered by 3, to be a mathematical struc- 
ture called a “meet semi-lattice”, where every pair of descrip- 
tions B and C has a greatest lower bound-a description that 
subsumes any other description that is subsumed by both B and 
C-namely, and(B, C). We emphasize that it is the entire in- 
finite space of descriptions that is the semi-lattice, not just 
some finite subset of named descriptions of interest for some 
particular application or other. 

Although not the norm ([l], [29], [64] are exceptions), we 
believe that it is important to pursue this lattice-theoretic ap- 
proach as foundational for DLs, if we wish to treat concepts as 
structured, intensional objects. Actually, the DLs encountered 
in practice usually form full lattices: there is a most general 
concept, TOP-CONCEPT, and there exists a unique least com- 
mon subsumer for every pair of descriptions. Moreover, given 
descriptions B and C such that B 3 C, it is possible to con- 
sider the notion of relative complement(s) in this lattice: the 
maximal description(s) D such and(C, D) = B. 

For example, Fig. 2 presents two descriptions, their greatest 
common subsumee (meet), least common subsumer (join), and 
the relative complement between the join in (c) and the first 
concept in (a), in a language having constructors (and,at- 
most,at-least,all,one-o f} . 

and( prim(COURSE), 
at-most(25 t a k e r s ) ,  
all(taughtBy, one-of(Gaus s , Eucl id) ) )  

at-most(2O t a k e r s ) ,  
all(taughtBy, one-of(Gauss , Marx))) 

and( prim(COURSE), prim(FUNNY -EVENT) 

(a)  Two descriptions. 

and( prim(COURSE), prim(FUNNY-EVENT), 
at-most(2 0 , t a k e r s ) ,  
all(taughtBy, one-of(Gauss))) 

(6)  The meet of the two descriptions in part (a)  

and( prim(COURSE), 
at-most(25 t a k e r s ) ,  
all(taughtBy, one-of(Gauss, E u c l i d ,  Marx))) 

(e)  The join of the two descriptions in part (a)  

all(taughtBy, one-of(Gauss, E u c l i d ,  Marx))) 

(6) The relative complement of the description in (e)  and 

the first description in (a). 
Fig. 2. Two descriptions and lattice operations on them 

The interested reader may consult [29], [64] for conditions 
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CONCEPT CONSTRUCTORS ROLE CONSTRUCTORS COMPLEXITY 
and,all, SMI~-M - Undecidable (591 

at-least, at-most) 
and, not, d, some, or 

roband PSPACE [351,[34] 
X J i T  (and, or, not, some, 

ED-TIME (581 
compose, role-or, lnrery 
tr-6 ~ t ? k t . T O P - R O L B  

Lad, all, at-most, at-kMt, 

under which the semi-lattice is guaranteed to be a lattice and to 
have unique relative complements. 

The domain of concept terms of a DL together with the sub- 
sumption relation +, and the and constructor (or its equiva- 
lent) form a semi-lattice, in which it is usuallypossible to also 
define join and relative complement operators. These will 
prove useful in applications of DLs. 

B. Reasoning With DLs 
Although the original goal of DLs was to provide a conven- 

ient form for expressing the desired knowledge and inferences 
of some application, a highly influential paper [22], explored 
the idea that choosing a subset of concept constructors leads to 
description logics of more restricted expressiveness, but at the 
same time more efficient reasoning. As a result, there is a large 
body of literature considering various combinations and varia- 
tions of constructors for which reasoning is decidable, or even 
tractable. We present in Table I1 just a small sampling of the 
known results about the complexity of computing subsumption 
for various combinations of term constructors. The reader may 
also find interesting reference [5 11, which describes interesting 
connections between DLs and other formalisms. Hence: 

The choice of term constructors is tailored to the expressive 
purposes at hand, tempered by the desired computational 
properties of the resulting reasoner, especially its decidability. 

TABLE I1 
SOME SUBSUMPTION COMPLEXITY RESULTS 

S-*M on attrihuh, All+ Polynomial [19] 
one-of with integers 

A final note on the implementation of DL reasoners may be 
of interest. There are basically two approaches to computing 
the subsumption relationship: One is to manipulate descrip- 
tions into a normal form which eliminates certain redundan- 
cies, and which makes explicit implied constraints (e.g., 
all(t akers,one-of(Ann, Bob)) is augmented by at-most 
(2, t a k e r s ) ) .  As a result, when the time comes to compare 
two descriptions, it is possible to do so by performing rela- 
tively few operations, usually comparing pairs of subterms 
built with the same constructor. This technique has been used 
in the implementation of languages such as KANDOR, CLASSIC, 
LOOM, and BACK. 

A second approach is to reduce the question “Is it the case 
that C 3 D?’ to the question “IS and(C,not(D)) inconsis- 
tent?”, and then use theorem-proving techniques to answer the 
second question. In particular, the implementation of most 
“complete” reasoners-ones that find all the inferences sanc- 
tioned by the standard semantics-is based on such an ap- 
proach. For example, KRIS uses a tableaux method with rewrite 
rules for deciding consistency, which is based on [60], [39]. 

Having examined the foundations of DLs, we can now turn 
to their application to data and knowledge management. 

111. USING DLs FOR DATA MODELING 

DLs were developed and studied intensively in the field of 
Knowledge Representation, so it is not surprising that they are 
particularly adept at representing the semantics of real world 
situations-including data semantics. In particular, semantic 
data models [40], and more recently object-oriented databases 
(e.g., [41]), have claimed to capture the meaning of the data 
more directly by concentrating on entities (grouped into 
classes) related by relationships (often binary). 

Suppose we start with a class, such as 
class STUDENT is-a PERSON with 

s tudNumber : INTEGER; 
l e v e l  : {1 ,2 ,3 ,4 )  

In terms of DLs, STUDENT and PERSON are primitive con- 
cepts, since individual entities need to be asserted as instances 
of them-a person cannot be recognized fi-om external proper- 
ties alone. The above class declaration then specifies a con- 
straint-a necessary condition that must apply to all instances 
of STUDENT. This constraint can be expressed, using rela- 
tively simple constructors, by requiring STUDENT to be sub- 
sumed by the description D = 

and(PERSON, 
all(studNumber , INTEGER), 
at-least(1 I studNumber),at-most(1 I studNumber) , 
all(leve1, one-of(1 I 2 ,3  I 4) ), 
at-least(1, level),at-most(1 I l e v e l )  ) 

Such a constraint is written in the form PERSON 2 D, and 
its meaning is to limit the relational structures I used to inter- 
pret any other description to those that satisfy the condition 
PERSON’ G D‘. 

If the declaration of class STUDENT also specified that 
s tudNumber is a key, we could encode this as the additional 
description 

at-most(1, compose(s tudNumber, 
inverse(s tudNumber))) 

which says that if we look for individuals that have the same 
student number as this one, we will fmd at most one (this par- 
ticular individual). 

The argument that semantic data models, such as DAPLEX 
and Entity-Relationship, can be expressed using relatively 
limited DLs, as above, has been presented in several papers, 
including [30], [ 111, [28], and [26]. For example, the later 
paper models the entity relationship diagram in Fig. 3 by posit- 
ing classes STUDENT, ENROLLMENT, and COURSE and add- 
ing the following constraints 

ENROLLMENT 2 
and( 
all(st,STUDENT) at-least( 1 ,st) at-most(1 ,st) 

all(crs,COURSE) at-least(1,crs) at-most(] ,CIS) 
all(when,DATE) at-least(1 ,when) at-most(1 ,when)) 

STUDENT 5 
and( 
all(inverse(st), ENROLLMENT) 
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at-least(1, inverse(st)) 
at-most(6, inverse(st))) 

COURSE 2 
and( 
all(inverse(crs), ENROLLMENT) 
at-least(1, inverse(crs)) at-most 

(300, inverse(crs))) 

while in [28], n-ary relationships (and associated term con- 
structor) are introduced in order to model directly relations. 

Fig. 3. Entity-relationship diagram. 

Similarly, [30], [lo], and [26] show how the non-procedural 
aspects of object-oriented database schemas such as O2 can be 
captured using DLs. 

Representing the database schema in a suitable, decidable 
DL has been argued to have a number of advantages: 

0 The greater expressive power of some DLs (e.g., the 
presence of negation, disjunction, co-reference con- 
straints or inverses) makes it possible to capture impor- 
tant additional aspects of the data semantics [26]. 
By checking whether C - NOTHING as a consequence of 
any particular set of constraints, it is possible to detect 
whether or not the global set of specifications in some 
schema force class c to be incoherent-i.e., one can help 
verzfL the schema’s consistency [30]. 
By using the relative complement operator, it is possible 
to reduce the redundancy in the schema presentation, so 
that every class declaration contains only the minimal 
additional constraints on top of the explicitly named par- 
ents fiom which it inherits [ 1 11. 
In object oriented models, the descriptions used as con- 
straints on primitive class names correspond to types, and 
in data models such as O2 there is a requirement that sub- 
classes have more refined type [41]. The subsumption 
ordering on descriptions corresponds to type refinement, 
and hence provably correct subsumption algorithms can 
be used for type checking [50]. 

Most significantly, description logics provide the opportu- 
nity to introduce and give names not just to primitive classes 
but also to definedvirtual classes, which are essentially views. 
For example, we can add to a schema the notion of 
UNDER ENROLLED CLASS-a course with 5 or fewer tak- 
ers, by adding the definition 

UNDER ENROLLED CLASS = 
and(CzURSE, at-mTst(5, takers)) 

The new and considerable advantage gained in this case is that 
the system itself can be charged with organizing these views 
into a subclass hierarchy-a non-trivial task when there are 
many views. In particular, given an existing taxonomy of 
views and primitive classes, a classrJier program can be used 
to find the least subsumer(s) and most general subsumees of 
any new view. 

Federated databases [6 11, and more generally so-called co- 
operative information systems, where information from several 
sources is made accessible to users, form a particularly active 
area of application for DLs [4], [28], [62], [71]. A key reason 
for this is that in order to make several pre-existing databases 
co-operate it is necessary to first express and relate their con- 
tents and semantics. As argued above, DLs provide a richly 
expressive medium for this task. 

For example, [28] uses an expressive DL to relate the enti- 
ties and relationships in the schemas of several databases using 
constraints of the form = and 2, in the presence of some (but 
not necessarily complete) global world knowledge. This in- 
formation can then be used once again to detect incoherence 
and redundancy in the resulting system (or maybe just its 
description). 

One approach to federated databases is to integrate the 
schema of the participating databases. [62] provides an ap- 
proach to schema integration which uses the Candide DL as 
the commodcanonical data model. Among others, a human is 
charged with the heuristic task of creating an attribute hierar- 
chy showing the relationships between attributes appearing in 
the classes of the various schemata. For example, given several 
databases at the university, a designer might come up with the 
following hierarchy (where indentation is used to indicate the 
tree structure) 
TOP-ROLE 
person-identifier 

dbl-stud-name 
db2 - f ul1 -name 

person-number 
db 2 - emp # 
db3-socsec# 

course-identifier 

person-name 

The (formal and automated) subsumption and disjointness 
operations on descriptions use this attribute hierarchy to pro- 
vide a list of class pairs that appear to be candidates for com- 
parison, because they are equivalent, disjoint or overlapping; 
the system then offers to the human user a variety of operators 
(including Generalize, Specialize, Delete) that can be used to 
restructure and integrate the components of the schema. 

Another technique for developing the “right” schema is 
proposed in [9], where one starts with individuals and existing 
classes, and clusters them into potentially new classes. The 
algorithm, related to the “least common subsumer” notions 
introduced in [29], is based on the structure of the class defi- 
nitions, presented as descriptions. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore.  Restrictions apply.



676 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, OCTOBER 1995 

IV. ADDITIONAL USES OF DLS IN 
INFORMATION SYSTEMS 

Although DLs are natural candidates for describing the 
schema of databases, there are a number of additional ways in 
which descriptions can be used to help in managing informa- 
tion. To see this, we introduce a somewhat more formal view 
of Knowledge Base Management Systems (KBMS)-systcms 
which maintain and reason with models of some application 
domain4 Let us start fiom Levesque’s functional view of a 
KBMS [43]: The basic idea is to treat a knowledge base as an 
abstract object on which one can perform two kinds of opera- 
tions: TELLs and ASKS. TELLS are used to build or modify the 
model of the domain being maintained by the KBMS 

while ASKS retrieve information 
TELL: LTe], x KB 3 KB 

ASK: bq X KB + Lhww 
The proper specification of a KBMS and its behavior therefore 
requires the definition of four things: 

0 &e],: a language for describing what we know about the 

0 GUq: a language for describing questions that we wish 

0 f 
0 Query answering: how answers to queries are related to 

For example, a reasoner based on First Order Logic (FOL) 
could be described by setting &e]] = Lhk = { well-formed 
formulae of FOL}, Lh, = {Yes, No, Unknown}, and defin- 
ing the answer to some question Q as Y e s  (respectively N o )  
iff the conjunction of the facts told the KB so far entail Q 
(respectively -Q) according to mathematical logic. 

Without loss of generality, and with considerable gain in 
convenience, we allow a whole host of TELL and ASK opera- 
tions, each with possibly different associated languages. Ex- 
perience with building large software systems of all kinds, 
including knowledge bases, has taught us that it is an error 
prone process. Some ways in which errors can be more easily 
detected is to allow named abbreviations, to insist on identifi- 
ers being declared (so that simple typographical errors can be 
detected) and to allow assertions to be made about the valid 
and invalid states of the knowledge base. For this purpose, we 
distinguish two special kind of TELL operations, DECLARE and 
CONSTRAIN. In the FOL case, DECLARE would be used to in- 
troduce the predicate names and arities for example, while 
CONSTRAIN may state so-called integrity constraints, which 
would not be used deduce answers, only to detect errors in 
what the system is being told. 

The reason for introducing the above terminology is to help 
make the following point: 

Description languages can be used in any of the languages as- 
sociated with a KBMS including s,,, , &I, SA* 
and SAnsuur In each of these situations, the logic associated 

world; 

to learn about; 
the language in which answers will be phrased; 

what has been told to the KBMS. 

4. Nota Bene: This view is adopted strictly for didactic purposes. Using 
DLs in a reasoning system in no way commits the developer to such a view. 

with the description language(s) in question is used to &$ne 
what it means to answer a question. 

In retrospect, we have investigated already in Section I11 the 
and &,=&. We continue with the other use of DLs in 

languages. 

A. A Database-Like KBMS 
Suppose that we have specified the schema of a small uni- 

versity knowledge base, including primitive concepts PER- 
SONS, STUDENTS, COURSES, SUBJECTS, SCIENCES, 
and roles has -sub j e c t , t eaches  , t augh t  By, age 
and t a k e r s ,  all but the last of which are (single-valued) 
attributes. We are now ready to describe the current state of 
the world. We will frst need to tell the database about new 
individuals, e.g., introduce a new individual, Crs43 1, by invok- 
ing an operator: 

Crs43 1 := CREAT-IND( ). 

Information about such individuals is recorded in the data- 
base in two ways: by specifying what classes they belong to 
(e.g., “Crs431 is a COURSE), and by specifying their inter- 
relationships through roles (e.g., “Crs43 1 is taught by Einstein 
and is taken by Anna, ...9. For this purpose, we have opera- 
tions INSERT-IN and FILL-WITH, which are used as follows: 

INSERT-IN(Cd3 1 ,COURSE) 
FILL-WITH(Cd3 1 ,taughtBy,Einstein), 
FILL-WITH(Cd3 1 ,takers, Anna) 
... 

Suppose that after several such operations we want to retrieve 
some information, by asking a question. Queries are charac- 
terizations of those objects which satisfy their conditions. We 
have already seen that the natural interpretation of descriptions 
was as specifications of sets of individuals: if we want to find 
“All courses with at least 10 students taking it, taught by 
someone who is in a science department”, then the description 
and(COURSE,at-least(10, takers) ,  
all(taughtBy,all(in-dept , SCIENCE-DEPT))) 

expresses this. The answer to such a query would be a list of 
individuals that satisfies the conditions of the query-i.e., the 
ones recognized by the query description. Papers such as [65], 
[55] ,  [8], [50], and [25] have investigated the use of DLs as 
query languages. 

DLs are particularly useful for querying knowledge bases in 
situations when the user is not entirely familiar with the con- 
tents or structure of the data, or when they are not entirely sure 
what question they should be asking. The second situation 
arises in data explorationlmining, which is essentially the ac- 
tivity of looking for interesting correlations or patterns in large 
sets of data accumulated for other .purposes. 

In such situations, we find interesting and novel applications 
of the fact that descriptions can be classified in a subclass 
hierarchy. 

0 One can detect incoherent queries-nes which cannot 
possibly return any individuals because of the semantics 
of the database-and allert the user that this question is 
ill-formed. 
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More generally, in many situations even if a query is co- 
herent, when it retums an empty set as answer, it is a 
“miss”. In such cases, it is reasonable to consider general- 
izing the query slightly until a non-empty answer set is 
obtained. The lattice of subsuming descriptions provides 
the obvious space to search for such generalizations, and 
therefore the system can provide a helping hand in this 
task, as illustrated in [3]. 
The description lattice supports the paradigm of query 
specification by iterative refinement, described in [65] 
and [SS]. 
Data exploration involves asking very many queries, 
possibly by teams of people, over an extended period of 
time. The DL-based KBMS can automatically organize 
this large set of queries through the subsumption relation- 
ship, thereby allowing users to find identical or similar 
queries asked in the past, together with their answers 
[24]. This is important if the queries may require a con- 
siderably long time to process, or if users associate com- 
ments/observations with queries. The operation of classi- 
fying a given new description with respect to some set of 
previously encountered descriptions is in fact standard in 
all DL-reasoners, with various techniques for doing so 
surveyed in [46], [67], [7]. But we emphasize that such a 
set of classified descriptions forms just a finite sub- 

approach, followed in [53], [48], is to model as part of the KB 
the relations in the database as well as their relationship to the 
concepts in the semantic model, and then build a component 
that takes a DL query, transforms it into a query against the 
DBMS, and retums the answer. Another approach, suitable in 
cases when there is frequent KB access, or for DLs that are not 
sufficiently expressive, is to “load” the database into the DL 
knowledge base. A straightforward approach to this is likely to 
be have unacceptably poor performance, and [ 161 offers a way 
to compile much of the reasoning of the DL classifier into a 
sequence of SQL queries, thus taking advantage of the bulk 
processing offered by DBMS. 

Second, one must deal with the fact that DLs have limited 
expressive power. In fact, [70] shows that for all DLs consid- 
ered so far, even undecidable ones, concepts can essentially be 
translated to FOL formulas with at most 3 variable symbols. 
One approach, suggested in [25], is to factor out a “clean” part 
of the query (for which subsumption reasoning is performed), 
and put the rest of the query in an opaque, “dirty” box. An 
altemative, pursued by the LOOM system, is to implement in- 
complete subsumption reasoning for a very expressive lan- 
guage (which includes FOL as a sublanguage). In either case, 
note that the approximate nature of the subsumption relation- 
ship does not vitiate most of the advantages introduced earlier 
in this subsection. 

DECLARE. Queries as descriptions are obviously useful for 
view definition, with the same advantages detailed above. 
Moreover, finding that the current query is subsumed by some 
materialized view may provide a new opportunity for optimi- 
zation [25], similar to that envisaged for common sub- 
expression analysis for relational queries [38]: one need only 
test the query predicate on the individuals in the view. In fact, 
by using again the relative complement operation in the lattice 
of description, one might find a cheaper test to run on the 
members of the view. 

DLs are naturally suited for  expressing queries (i.e., 
LQ,,~~,,,,,,,~ and for  defining views (i.e.,  L I ~ ~ ~ / ~ ~ J .  The subsumption 
relationship can be used to automatically organize queries and 
views into an “is-a I’ hierarchy through classification, thereby 
supporting data exploration and query optimization. 

Several research issues arise in the use of descriptions for 
querying databases. 

First, although DLs offer a convenient technique for model- 
ing the semantics of an application domain and the semantics 
of the data, legacy data is usually present in some existing 
DBMS (at best, a relational one). We must therefore address 
the issue of retrieving the answer from such databases. One 

INSERT-  IN(Ne W - C r S , 
and(COURSE, 

a t-least(2 5 , t a k e  r s) 
all(takers,all(gpa,  range(3. 1, 4 .  0)) 
f i l ls(subject ,  *AI‘) 
al l ( taught  By, 

fills(depar tmen t , Computer S c i ) ) )  
1 

This extension, though at first glance quite small, has far- 
reaching consequences: it allows the KBMS to maintain in- 
complete information about individuals. For example, in the 
above case, we do not yet know the exact identity of the per- 
son who will teach the course, but we can already gather in- 
formation about her (e.g., that her d e p a r t m e n t  value is 
ComputerSci) .  More significantly, we can say things about 
all (currently unknown) people who will take the course: they 
will have gpa in the 3.1 to 4.0 range. This information can be 
used in query processing: when a query like “Find all courses 
taught by persons in science departments.” is stated, then 
N e w - c r s  can be returned if question answering includes 
checking whether the descriptor of an individual is subsumed 
by the query. 
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To assess the significance of this, observe that no database 
system can represent the kind of indeterminate information 
provided above about N e w - c r s .  Database management sys- 
tems can currently only handle “null values” for atomic facts 
such as strings and integers, and they cannot even reason 
completely about such null values. In contrast, a system such 
as CLASSIC can represent facts requiring an unbounded number 
of distinct nulls (e.g., something having at least 15 fillers for a 
role), and it can still answers its questions correctly and com- 
pletely in polynomial time. (Of course, CLASSIC does limit the 
kinds of questions one can ask!) 

This expressive power of DLs is also related to a second 
problematic aspect of databases: so-called “view updates”. 
Because DBMS translate updates to views into updates to the 
base/primitive concepts from which the views were defined, 
the set of views that can be updated is extremely restricted. In 
contrast, asserting in a DL that some individual belongs to a 
defined concept-a view-is maintained as just another fact 
about it, and this fact is reasoned with fully. We therefore have 

Using DLs in STu/l and using subsumption during query proc- 
essing allows one to assert indefinite information in the knowl- 
edge base. This supports, among others, the proper treatment 
of such traditionally diflcult database issues as null values 
and view updates. 

This aspect of KBMS based on DLs may explain in part 
their success in problems dealing with configuration manage- 
ment [52], [68]: configurations are incomplete designs, which 
are slowly being built up, yet we want to find out about prob- 
lems with them before everything is fully known. 

\ 

C. Using Descriptions in Answers 
Traditionally, questions such as “Who teaches N e w - c r s ? ,  

or “What is Johnny’s age?, are answered by displaying some 
individual value@), looked up in the database. The fact that we 
can associate arbitrary descriptions with individuals allows us 
to produce easily descriptive answers, representing the terms 
we have been told or deduced about these values. For the 
above questions we might now get answers such as 
and(FACULTY,fills(department ComputerSci))  or 
range( 1 9  2 7). 

In fact, this facility is useful not just when there is incom- 
plete information, but also whenever we don’t want to return 
lists, because they are too long for example. It has been argued 
(e.g., [63]) that in such situations it is appropriate to provide 
abstract answers. In the case of DL-based KBMS, this can be 
achieved by finding in the lattice of descriptions the least 
common subsumer [29] of the set of individuals’ descriptions, 
which captures their commonalities. 

Finally, in the case of very large schemas or when users are 
not fully familiar with the semantics of the domain they are 
dealing with, it is useh1 to provide intensional answers to 
queries: these display what must hold true of any individual 
(existing or not) that would satisfy the query [ 171. The work of 
Devanbu [32] on Software Information Systems provides one 
instance where such a facility is useful: when a new software 
developer joins a team that has been working on some very 
large project over a long period of time, she may not be aware 

of the intended stfucture of the code, which is expressed by 
many constraints in the schema. By asking for intensional an- 
swers, the novice can learn much about this invisible 
architecture. 

We therefore have 
Using DLS in SAmr provides the ability to give descriptive, 
abstract or intensional answers, in addition to enumerations of 
values. 

D. Varying the DLs 
In order to make it easier for people to learn to use a DL- 

based KBMS, some systems (e.g., CLASSIC) use the same syn- 
tax (i.e., description constructors) in the various languages 
associated with a KBMS. It is however not necessary to do so. 
In fact, because of computational costs, it may be desirable to 
allow different languages for different operators. This should 
not be too surprising: one can view Relational Databases as 
KBMS based on First Order Logic, where the LAsk contains all 
formulas, but LTell is restricted to atomic formulas 
(corresponding to inserting and deleting tuples), while LhW, 
provides only positive atomic formulas. 

The approach of varying languages has been advocated in 
[43], [42], [25] and has been practiced in systems which use 
DLs as query languages (e.g., [55]). 

E. Descriptions as Constraints 

We have seen already that it is useful to associate with a 
primitive concept some necessary conditions that would have 
to hold of its individual instances. It turns out that such a facil- 
ity is more widely useful: we might have defined the notion of 
UNDER-ENROLLED-CLASS as one with at most 5 takers, but 
it might be a contingent regulation at our university that such 
courses be allowed only at the senior or graduate level. Such a 
constraint might be stated using a CONSTRAIN-type operator 
CONSTRAIN(<constrained-set>,<constraint-con- 
d i t i o n > ) ,  where both arguments are descriptions. For ex- 
ample, as a result of 
CONSTRAIN(UNDER-ENROLLED-CLASS 

all(level70ne-Of(4 5))) 

whenever a new course individual is added, if it is inconsistent 
with the constraint description associated with UNDER- 
ENROLLED-CLASS, an error message would be generated by 
the system, and the update would not be allowed. 

Note that this use of a constraint is more limited than adding 
a logical implication of the form “If x is an UNDER- 
ENROLLED-CLASS then x is also an all( leve1, one- 
of(Senior ,  Grad)))”, because such an implication could be 
used for deducing new information about individuals, thereby 
considerably complicating the processing. (This distinction 
between “integrity checking” rules and “deductive” rules first 
appeared in deductive databases.) 

F. DLs for Stating Rules 
A more “active” KBMS can be obtained through the addi- 

tion of an operation such as ASSERT-RULE(<lhs- 
des crn>,<rhs-des  ern>), e.g., 
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ASSERT-RULE(and(COURSE,fillS(t opi  C , AI)), 
BORI NG-T H I NG) 

This would have the effect that any time an individual is rec- 
ognized as a course on A I ,  it would be added to the concept 
BORING-THING. Such rules were first mentioned in connec- 
tion with the CONSUL system [47], and have been heavily used 
in the LOOM system [45], as well as other recent systems such 
as [69] and CLASSIC, while their semantics has been clarified in 
[36] through the use of “epistemic operators” dealing with the 
“knowledge” of the system. They are less expressive than 
standard production rules because their antecedent is often 
only a single concept (rather than a relationship between indi- 
viduals) but because of their treatment of incomplete informa- 
tion, rules based on DLs provide other advantages, including 
[69]: 

0 classification applied to the antecedent (or even the con- 
sequent) of rules can be used to organize them into a hi- 
erarchy; this means that the system can help the pro- 
grammer find closely related rules-a frequent cause of 
errors in rule-based programming; 

0 classification can also help implement the usual conflict- 
resolution strategy of “apply the most specific rule” by 
using the automatic classifier, rather than relying on the 
programmer to specify which rule is more specific. 

The rules above are not necessarily treated as logical impli- 
cation-some systems do not ‘reason with the contrapositive, 
nor do they do case analysis (e.g., if B(x) =I D(x) and -, B(x) =I 

D(x) then always conclude D(u)). One could obviously add 
rules with different kinds of reasoning strategies: ordinary 
logical implication, default rules, etc. 

In conclusion, 
Descriptions can be used in a natural way to specify a limited 
set of conditions and actions for  a variety of rule languages, 
including integrity constraints, triggers, defaults, etc. In all 
such cases, subsumption can be used to organize large sets of 
such rules, and recognition helps in the firing process. 

v. ON THE GENERALITY OF THE DL FRAMEWORK 

It is important to point out the generality of the above 
framework. First, there is no reason to restrict the notion of 
“individual” to mean “object with intrinsic identity”. There- 
fore, it is entirely possible to consider mathematical entities 
(e.g., integers, n-tuples), programming language values (e.g., 
arrays, procedures), composite values (e.g., lists or trees of 
others kinds of individuals) as individuals, and have descrip- 
tions that denote sets of such individuals. Second, there is 
complete freedom in the choice of term constructors in the 
language syntax, and their intended interpretation. 

Illustrative of the kind of benefits one gains from this free- 
dom are languages for describing actions/plans, and expressing 
temporal concepts. For example, [ 121 introduces special con- 
cept constructors for describing classes of temporal intervals. 
Thus 

after(l98 0 )  and duration-greater(2, year) and 
before(n ow) 

refers to all time intervals beginning after 1980, of duration at 
least 2 years, which end before the reference time interval 
now. Such temporal concepts can then be used with construc- 
tors sometime and alltime to describe sets of individuals. For 
example, if we abbreviate the above temporal description as a, 
then 

PROFESSOR and sometime(a,STUDENT) 
represents the set of individuals who are professors now and 
who were students for a period of at least 2 years between 
1980 and now. 

We have therefore two more observations: 
There is no “universal” set of term constructors. The term 
constructors used in a DL may be domain or even application 
speczjk. 

and 
The denotations of concept descriptions need not be atomic 
individuals, but could have internal (mathematical) structure. 

This is extremely liberating: in talking about courses, there 
is no obstacle preventing us from developing a new language, 
or extending an existing language, to talk about domain spe- 
cific things: for example, if every course has an instructor and 
a subject, and there is some subtle inference that needs to be 
performed with these, then we could have a term constructor 
course(<instructor>,<topic>) .  (There is a price of 
course for inventing new constructors-we need to specify 
how to reason with them and implement this specification!) 

VI. COMPLEXITY VERSUS EXPRESSIVENESS 

We have already mentioned the strong interest in the DL 
community concerning the decidability and complexity of rea- 
soning with various DLs. The aforementioned complexity re- 
sults, and the specter of being caught between the Scylla of 
tractable but inexpressive DL reasoners, and the Charybdis of 
rich but computationally intractable languages, has elicited a 
variety of responses concerning the design of DLs and their 
implementations. 

A. Limited Languages 
Some authors have argued that DL-based systems need to 

respond in polynomial time if they are to be useful as “servers” 
to other problem solvers [22], [54]. This led to a class of lan- 
guages, including KANDOR and KRYPTON, which had relatively 
few constructors, carefully chosen so that subsumption would 
be polynomial-time decidable. This approach has been cri- 
tiqued [37] on the grounds that if some application needs to 
make inferences, and the KBMS is not capable of making 
them, these inferences will be implemented somewhere else, 
destroying the conceptual coherence of the knowledge base. 

B. Complete Reasoners for Intractable Languages 
Some researchers [6], [58] feel that as long as the logic is 

decidable, it is reasonable to deliver to the users a system that 
reasons correctly with it. The main obstacle faced by this ap- 
proach is to make the performance of the system be predict- 
able, so that users are aware of the forms of knowledge which 
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can cause exponential explosion in the time or space used by 
the system. We remark that certain worst-case complexity re- 
sults-such as the result that just by allowing definitions can 
lead to an exponential blow-up during processing [49]-are 
not considered to be a problem, because the examples are 
pathological and do not arise in practice. 

C. Incomplete Implementations of Logics 
Systems such as LOOM explicitly acknowledge to their users 

that not all inferences sanctioned by the obvious semantics of 
constructors are implemented. The difficulty faced by this ap- 
proach is to describe to the user the incompleteness. As we 
have seen, operational definitions are relatively difficult for 
DLs. Other kinds of semantic specification techniques have 
been proposed for this purpose, including non-standard deno- 
tational semantics such as those in [56], [19], or proof- 
theoretic axiomatizations, such as in [13], [14], [57]. 

D. Providing an “Escape Hatch” in the Language 

plete information. They are therefore an alternative approach 
to the standard techniques for limiting the expressive power of 
First Order Predicate Calculus (e.g., Horn-formulas), which 
rely on the form of the formulas most easily characterizable 
using the standard logical connectives (negation, disjunction, 
quantifiers). 

At the same time, the framework of DLs is sufficiently 
flexible to admit with relative ease the introduction of new 
description constructors, which can be application specific, as 
illustrated by such systems as CLASP [31]. This allows DLs to 
be tailored to better serve particular applications. 

This survey has attempted to show the utility of DLs in de- 
scribing the (conceptual) schema of databases. This paper has 
argued that, contrary to popular myth in AI, DLs are useful not 
only for defining “terminology”. Descriptions can be used in all 
the languages associated with a KBMS: for asserting incomplete 
information about individuals, for obtaining descriptive or in- 
tensional answers, for stating rules and constraints, etc. 
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