
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL 7 , NO. 5 , OCTOBER 1995 67 1

Description Logics in Data Management
Alexander Borgida

Abstract-Description logics and reasoners, which are descen-
dants of the KL-ONE language, have been studied in depth in Arti-
ficial Intelligence. After a brief introduction, we survey in this
paper their application to the problems of information manage-
ment, using the framework of an abstract information server
equipped with several operations-each involving one or more
languages. Specifically, we indicate how one can achieve en-
hanced access to data and knowledge by using descriptions in
languages for schema design and integration, queries, answers,
updates, rules, and constraints.

Index Terms-Description, concept, terminological, language,
subsumption, knowledge representation, object-oriented schema,
intension.

I. INTRODUCTION

LARGE class of practical computer applications requires A managing a symbolic model of an application world,
which is updated or queried by users. Many such systems start
with the intuition that for describing some situation, it is useful
to think of various kinds of individuals, e.g., C a l c u l u s 1 0 0 ,
Gauss , related by relationskips, e.g., t augh tBy , and
grouped into classes, e.g., COURSE, TEACHER, STUDENT.
This intuition is shared by formalisms such as semantic data
models, object-oriented databases, and semantic networks.
Such formalisms support languages for declaring classes of
individuals, using a syntax somewhat resembling the following
example:

class ADVANCED-COURSE is-a COURSE w i t h
takers [0,401: G R A D S

. . .
Such a declaration is intended to express necessary conditions
that must be met by each instance of the class. For example, in
the above case every instance of ADVANCED COURSE must
also be an instance of class COURSE, and t h e t a k e s s attrib-
ute must relate to it between 0 and 40 individuals, themselves
instances of class GRADS. Class definitions are used to detect
errors, or as a template for data storage decisions, i.e., as a
type declaration in standard programming languages.

The subject of this paper is yet another family of formal-
isms-description logics (DLstwhich are currently enjoying
a surge of interest both as objects of theoretical study and as
tools used in applications, including ones in industry.

A. Description Languages

The fundamental observation underlying DLs is that there is
a benefit to be gained if languages for talking about classes of
individuals yield structured objects that can be reasoned with.

Manuscript received July 18, 1994.
The author is with the Department of Computer Science, Rutgers Univer-

IEEECS Log Number K95057.
sity, New Brunswick, NJ 08903, USA. E-mail: borgida@cs.rutgers.edu.

Fig. 1 contains an example of a typical compositional descrip-
tion, expressed in the CLASSIC language [17]. Its intended
reading would be “Courses with at most 10 takers, all takers
being instances of GRADS”. In this description, COURSE and
GRADS are identifiers for concepts introduced elsewhere,
while t a k e r s is the name of a binary relation, intended to
relate courses to students taking them. There are several things
one can do with such a description, including:

Reasoning about the relationship of one description to
another, treating them as “intensional” objects. For ex-
ample, the description in Fig. 1 is subsumed by (entails)
the description (and COURSE , (at-most 15 t a k e r s))
since everything with at most I O fillers for some role,
also has at most 15 fillers for it. On the other hand, the
description (at-least 12 t a k e r s) can be inferred to be
disjoint from the one in Fig. 1, because the required
number of fillers are in conflict.
Recognizing those individuals that satisfy the description,
based on what is currently known about them. For ex-
ample, suppose AI100 is an individual object in the
knowledge base, and it is known to be an instance of the
concept COURSE; in addition, the fillers for the t a k e r s
role for AI100 are individuals C a l v i n and Hobbes,
both of which are instances of GRADS. Then AI100 is
inferred to be an instance of the description in Fig. 1,
since all the necessary and sufficient conditions of that
concept are satisfied.

(and
COURSE ,
(at-most 10 takers) ,
(all takers GRADS))

Fig. 1. Compositional concept in CLASSIC.

As a possible clarification of the issues involved, we pro-
vide an analogy for those familiar with logic programming.’
Since descriptions denote concepts or relationships, it is natu-
ral to take their analogues in logic to be ordinary unary or bi-
nary predicates. Consider the following knowledge base of
Horn clauses:

ParentOf (l i z , andy) .
Child(_x) :- ParentOf (-z,-x) .
Son (-y) : - Male (-y) , ParentOf (-w, -y) .)

Male (andy) .

Normally, such a system is used to deduce new properties of
individuals, e.g., whether the Son predicate “recognizes” the
individual andy. On the other hand, we might want to reason
entirely from intensional information-the rules-ignoring
ground facts. For example, we might be interested in whether
C h i l d (-x) is implied by (“subsumes”) Son (-x). Note that

1. This analogy extends an example found in [46]

1041-4347/95$04 00 0 1995 IEEE

-~ Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

mailto:borgida@cs.rutgers.edu

612 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 5 , OCTOBER 1995

although we cannot express this question in Prolog, theoreti-
cally the answer would be “yes,” because the last two clauses
are in fact treated as the following definitions

Child(x) e (32) PurentOAz,x)
Sonb) w (3w) Muleb) A PurentOj(w,y)

special languages obtained by term composition. All DLs have
(at least) two sorts of terms: concepts (intuitively, denoting
collections of individuals), and roles (intuitively denoting re-
lationships between individuals); because functional relation-
ships occur very frequently, such roles are often distinguished,
and will be called attributes in this paper. Therefore the syntax
of DLs consists of rules for creating composite terms from
atomic/primitive symbols-identifiers of various sorts-and
term constructors. For example, suppose prim is considered to

primitive concept, and suppose all and atmost are also con-
cept constructors, then the following term

by the semantics of predicate completion in Prolog. However,
if we took seriously the rule for Son as its definition, then
asserting Son(f red) ought to allow us to deduce that
Child(fred)-a deduction not made in cunent logic pro-

the trademark of description logics.
g r m i n g systems. It is such reasoning with definitions that is be a concept term constructor, whose argument identifies a

B. Outline
For readers familiar with database management,2 the paper

provides a tutorial and survey of how descriptions and their
reasoners can enhance the modeling power of the database
(i.e., the kinds of knowledge about the world that can be
stored), facilitate the user’s interaction with it, or support the
development of databases.

For readers conversant with Artificial Intelligence, DLs are
descendants of the influential KL-ONE system [20], [21], and
have been extensively studied under the name of
“terminological logics.” The features and history of these
logics have been surveyed recently in papers such as [66],
[46]. Therefore our aim is to provide for this audience a novel,
systematic look at the various uses to which DLs are being put
for information management-a view considerably broader
than that usually assumed in Artificial Intelligen~e.~

We begin by considering the syntax and semantics of de-
scription languages, illustrating the kinds of reasoning they are
especially suited for. Thereafter, we present a semi-formal
view of an Information System as a “black box” with several
operations, each of them involving one or more languages. By
examining the possibility of using DLs for each of these lan-
guages, we obtain a systematic survey of their utility.

Throughout the paper we endeavor to summarize the key
points as italicized observations.

11. THE SYNTAX AND SEMANTICS OF DLS

Although the original KL-ONE system supported a graphical
notation for representing definitions of concepts, all DLs since
the KRYPTON system [23] provide a formal linear syntax for
writing descriptions. To give the reader a sense of the syntactic
variations in use, here are versions of the description in Fig. 1
in the two other currently most widely used DLs, BACK [44]
and LOOM [45], as well as an infix notation used in many theo-
retical papers:

COURSE and at-most(10, takers) and all(takers, GRADS)
(:and COURSE (:at-most 10 takers) (:all takers GRADS))
COURSE n 110 takers n Vtakers:GRADS
As proposed by Ait-Kaci [l], it is useful to view DLs as

2. Such readers are assumed to have elementary familiarity with proposi-

3. For this purpose, some elementary familiarity with the functionality of
tional and first order logic.

relational databases is assumed.

and(prim (COURSE ,
at-most(20, t a k e r s) ,
all (t a u g h t B y , prim (PROFESSOR)))

is intended to denote those instances of the (primitive) concept
COURSE which have at most 20 students taking them (at most
20 fillers for the t ake r s role), and are only taught by PRO-
FESSORS. Suppose professors have a r a n k role, whose pos-
sible values are in the set { a P , AP , P}, and suppose we wish
to restrict the above description to include only courses taught
by tenured professor-i.e., add a restriction that the composi-
tion of t a u g h t B y with r a n k must be one of the values AP
or P. This can be accomplished by adding an additional con-
junct, built using concept constructor one-of, which takes as
arguments an enumeration of values, and role constructor
compose, which denotes role composition:

all(compose(taughtBy, r a n k) , one-of (AP, P))

Table I contains a fairly comprehensive list of domain-
independent description constructors, from [66], which were
arrived at empirically, in efforts to express the meaning of
natural language sentences and other Artificial Intelligence
tasks.

One can in fact view DLs as a logical notation where logical
operators were chosen to facilitate the expression of fre-
quently used conceptual structures, and related inferences. To
highlight this point, consider the alternative of representing
descriptions as unary and binary predicates in Predicate Calcu-
lus. The formula, with free variable a, corresponding to the
description example in this section is

COURSE(a)
A (3x, ... 3 ~ ~ ~) takers(wl) A ... A takers(wlo)
A(X] #x2 A XI # x3 A ... A xi9 # x20)
A Vr taughtBy(a,r) 3 PROFESSOR(r)
A Vr Vy taughtBy(a,r) A rank(r8) 2

0, = AP v y = P)

It is evident that the encoding in predicate logic is less perspi-
cous, mostly due to the proliferation of variables and quantifi-
ers. As a result, it is more difficult to represent information in
this notation, and it is less readable for humans. It is also more
difficult for theorem provers to recognize the subsets of the
above sentences which are amenable to fast but special pur-
pose reasoning, e.g., checking that at-least(2 5, t a k e r s)
entails at-least(2 0 , t a k e r s) is a matter of a single integer
comparison for DL-based reasoners. An interesting distin-

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

BORGIDA: DESCRIPTION LOGICS IN DATA MANAGEMENT

IDENTITY ((44 I d E A’}

AI x AI \RI

{ (d , d‘) I (d’, d) E R x }
{ (d , 6) E p’ I d‘ E C’}

role-and[p,ql p’ n qz

role-or[p,ql p’ U q”
. role-not[p]
inverse[p]
restriet[p,C]
compose[p,ql p’ o 8
uroductCD1 Cz x OI

673

guishing feature of the syntax of description languages is that
they express such statements without introducing the notion of
variable, scoping, and substitution.

We summarize the preceding in the following observation:
DLs provide languages for building variable-jiree, composite
terms from primitive identi3er-s using term constructors; these
terms denote several sorts of things, including concepts (sets of
individuals) and roles (relationships, which are usually bi-
nary).

TABLE I
DOMAIN-INDEPENDENT DESCRIPTION CONSTRUCTORS

1 TERM INTERPRETATION J
1 TOP-CONCEPT A’ I

NOTHING

I TERM INTERPRETATION I
1 TOP-ROLE A’ x Ax I

A. The Logic of Descriptions
We have seen above that an interpretation associates with

every concept description an extent, just like the interpretation
of a unary predicate in FOPC. There are a number of natural
questions that one normally asks about a description D

Is D coherent/consistent?: The answer is no if the deno-
tation of D, D’, is empty for every possible relational
structure I.
Does D subsume C?: The answer is yes if the denotation
of C is a subset of the denotation of D, C1 D‘, for every
possible relational structure I.
Are D and C mutually disjoint?: The answer is yes if
C’ rl D’ = 0 for every possible relational structure I.
Are D and C equivalent? The answer is yes if C’ = D’ for
every possible relational structure I.

The subsumption relationship, which corresponds to mate-
rial implication between predicates and is symbolized by d, is

usually considered the most basic one. This is because all DLs
have concept constructors and and NOTHING (which denotes
the inconsistent concept with empty extension), so that inco-
herence can be detected by asking the question “D *
NOTHING?”, while disjointness is answered by “and(C,D) *
NOTHING?”, and equivalence (E) is mutual subsumption.

In fact, the presence of and and NOTHING allows us to view
the space of all descriptions (actually, this space modulo the 5

relation), partially ordered by 3, to be a mathematical struc-
ture called a “meet semi-lattice”, where every pair of descrip-
tions B and C has a greatest lower bound-a description that
subsumes any other description that is subsumed by both B and
C-namely, and(B, C). We emphasize that it is the entire in-
finite space of descriptions that is the semi-lattice, not just
some finite subset of named descriptions of interest for some
particular application or other.

Although not the norm ([l], [29], [64] are exceptions), we
believe that it is important to pursue this lattice-theoretic ap-
proach as foundational for DLs, if we wish to treat concepts as
structured, intensional objects. Actually, the DLs encountered
in practice usually form full lattices: there is a most general
concept, TOP-CONCEPT, and there exists a unique least com-
mon subsumer for every pair of descriptions. Moreover, given
descriptions B and C such that B 3 C, it is possible to con-
sider the notion of relative complement(s) in this lattice: the
maximal description(s) D such and(C, D) = B.

For example, Fig. 2 presents two descriptions, their greatest
common subsumee (meet), least common subsumer (join), and
the relative complement between the join in (c) and the first
concept in (a), in a language having constructors (and,at-
most,at-least,all,one-o f} .

and(prim(COURSE),
at-most(25 t a k e r s) ,
all(taughtBy, one-of(Gaus s , Eucl id)))

at-most(2O t a k e r s) ,
all(taughtBy, one-of(Gauss , Marx)))

and(prim(COURSE), prim(FUNNY -EVENT)

(a) Two descriptions.

and(prim(COURSE), prim(FUNNY-EVENT),
at-most(2 0 , t a k e r s) ,
all(taughtBy, one-of(Gauss)))

(6) The meet of the two descriptions in part (a)

and(prim(COURSE),
at-most(25 t a k e r s) ,
all(taughtBy, one-of(Gauss, E u c l i d , Marx)))

(e) The join of the two descriptions in part (a)

all(taughtBy, one-of(Gauss, E u c l i d , Marx)))

(6) The relative complement of the description in (e) and

the first description in (a).
Fig. 2. Two descriptions and lattice operations on them

The interested reader may consult [29], [64] for conditions

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

674 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 5, OCTOBER 1995

CONCEPT CONSTRUCTORS ROLE CONSTRUCTORS COMPLEXITY
and,all, SMI~-M - Undecidable (591

at-least, at-most)
and, not, d, some, or

roband PSPACE [351,[34]
X J i T (and, or, not, some,

ED-TIME (581
compose, role-or, lnrery
tr-6 ~ t ? k t . T O P - R O L B

Lad, all, at-most, at-kMt,

under which the semi-lattice is guaranteed to be a lattice and to
have unique relative complements.

The domain of concept terms of a DL together with the sub-
sumption relation +, and the and constructor (or its equiva-
lent) form a semi-lattice, in which it is usuallypossible to also
define join and relative complement operators. These will
prove useful in applications of DLs.

B. Reasoning With DLs
Although the original goal of DLs was to provide a conven-

ient form for expressing the desired knowledge and inferences
of some application, a highly influential paper [22], explored
the idea that choosing a subset of concept constructors leads to
description logics of more restricted expressiveness, but at the
same time more efficient reasoning. As a result, there is a large
body of literature considering various combinations and varia-
tions of constructors for which reasoning is decidable, or even
tractable. We present in Table I1 just a small sampling of the
known results about the complexity of computing subsumption
for various combinations of term constructors. The reader may
also find interesting reference [5 11, which describes interesting
connections between DLs and other formalisms. Hence:

The choice of term constructors is tailored to the expressive
purposes at hand, tempered by the desired computational
properties of the resulting reasoner, especially its decidability.

TABLE I1
SOME SUBSUMPTION COMPLEXITY RESULTS

S-*M on attrihuh, All+ Polynomial [19]
one-of with integers

A final note on the implementation of DL reasoners may be
of interest. There are basically two approaches to computing
the subsumption relationship: One is to manipulate descrip-
tions into a normal form which eliminates certain redundan-
cies, and which makes explicit implied constraints (e.g.,
all(t akers,one-of(Ann, Bob)) is augmented by at-most
(2, t a k e r s)) . As a result, when the time comes to compare
two descriptions, it is possible to do so by performing rela-
tively few operations, usually comparing pairs of subterms
built with the same constructor. This technique has been used
in the implementation of languages such as KANDOR, CLASSIC,
LOOM, and BACK.

A second approach is to reduce the question “Is it the case
that C 3 D?’ to the question “IS and(C,not(D)) inconsis-
tent?”, and then use theorem-proving techniques to answer the
second question. In particular, the implementation of most
“complete” reasoners-ones that find all the inferences sanc-
tioned by the standard semantics-is based on such an ap-
proach. For example, KRIS uses a tableaux method with rewrite
rules for deciding consistency, which is based on [60], [39].

Having examined the foundations of DLs, we can now turn
to their application to data and knowledge management.

111. USING DLs FOR DATA MODELING

DLs were developed and studied intensively in the field of
Knowledge Representation, so it is not surprising that they are
particularly adept at representing the semantics of real world
situations-including data semantics. In particular, semantic
data models [40], and more recently object-oriented databases
(e.g., [41]), have claimed to capture the meaning of the data
more directly by concentrating on entities (grouped into
classes) related by relationships (often binary).

Suppose we start with a class, such as
class STUDENT is-a PERSON with

s tudNumber : INTEGER;
l e v e l : {1 ,2 ,3 ,4)

In terms of DLs, STUDENT and PERSON are primitive con-
cepts, since individual entities need to be asserted as instances
of them-a person cannot be recognized fi-om external proper-
ties alone. The above class declaration then specifies a con-
straint-a necessary condition that must apply to all instances
of STUDENT. This constraint can be expressed, using rela-
tively simple constructors, by requiring STUDENT to be sub-
sumed by the description D =

and(PERSON,
all(studNumber , INTEGER),
at-least(1 I studNumber),at-most(1 I studNumber) ,
all(leve1, one-of(1 I 2 ,3 I 4)),
at-least(1, level),at-most(1 I l e v e l))

Such a constraint is written in the form PERSON 2 D, and
its meaning is to limit the relational structures I used to inter-
pret any other description to those that satisfy the condition
PERSON’ G D‘.

If the declaration of class STUDENT also specified that
s tudNumber is a key, we could encode this as the additional
description

at-most(1, compose(s tudNumber,
inverse(s tudNumber)))

which says that if we look for individuals that have the same
student number as this one, we will fmd at most one (this par-
ticular individual).

The argument that semantic data models, such as DAPLEX
and Entity-Relationship, can be expressed using relatively
limited DLs, as above, has been presented in several papers,
including [30], [111, [28], and [26]. For example, the later
paper models the entity relationship diagram in Fig. 3 by posit-
ing classes STUDENT, ENROLLMENT, and COURSE and add-
ing the following constraints

ENROLLMENT 2
and(
all(st,STUDENT) at-least(1 ,st) at-most(1 ,st)

all(crs,COURSE) at-least(1,crs) at-most(] ,CIS)
all(when,DATE) at-least(1 ,when) at-most(1 ,when))

STUDENT 5
and(
all(inverse(st), ENROLLMENT)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

BORGIDA: DESCRIPTION LOGICS IN DATA MANAGEMENT 675

at-least(1, inverse(st))
at-most(6, inverse(st)))

COURSE 2
and(
all(inverse(crs), ENROLLMENT)
at-least(1, inverse(crs)) at-most

(300, inverse(crs)))

while in [28], n-ary relationships (and associated term con-
structor) are introduced in order to model directly relations.

Fig. 3. Entity-relationship diagram.

Similarly, [30], [lo], and [26] show how the non-procedural
aspects of object-oriented database schemas such as O2 can be
captured using DLs.

Representing the database schema in a suitable, decidable
DL has been argued to have a number of advantages:

0 The greater expressive power of some DLs (e.g., the
presence of negation, disjunction, co-reference con-
straints or inverses) makes it possible to capture impor-
tant additional aspects of the data semantics [26].
By checking whether C - NOTHING as a consequence of
any particular set of constraints, it is possible to detect
whether or not the global set of specifications in some
schema force class c to be incoherent-i.e., one can help
verzfL the schema’s consistency [30].
By using the relative complement operator, it is possible
to reduce the redundancy in the schema presentation, so
that every class declaration contains only the minimal
additional constraints on top of the explicitly named par-
ents fiom which it inherits [1 11.
In object oriented models, the descriptions used as con-
straints on primitive class names correspond to types, and
in data models such as O2 there is a requirement that sub-
classes have more refined type [41]. The subsumption
ordering on descriptions corresponds to type refinement,
and hence provably correct subsumption algorithms can
be used for type checking [50].

Most significantly, description logics provide the opportu-
nity to introduce and give names not just to primitive classes
but also to definedvirtual classes, which are essentially views.
For example, we can add to a schema the notion of
UNDER ENROLLED CLASS-a course with 5 or fewer tak-
ers, by adding the definition

UNDER ENROLLED CLASS =
and(CzURSE, at-mTst(5, takers))

The new and considerable advantage gained in this case is that
the system itself can be charged with organizing these views
into a subclass hierarchy-a non-trivial task when there are
many views. In particular, given an existing taxonomy of
views and primitive classes, a classrJier program can be used
to find the least subsumer(s) and most general subsumees of
any new view.

Federated databases [6 11, and more generally so-called co-
operative information systems, where information from several
sources is made accessible to users, form a particularly active
area of application for DLs [4], [28], [62], [71]. A key reason
for this is that in order to make several pre-existing databases
co-operate it is necessary to first express and relate their con-
tents and semantics. As argued above, DLs provide a richly
expressive medium for this task.

For example, [28] uses an expressive DL to relate the enti-
ties and relationships in the schemas of several databases using
constraints of the form = and 2, in the presence of some (but
not necessarily complete) global world knowledge. This in-
formation can then be used once again to detect incoherence
and redundancy in the resulting system (or maybe just its
description).

One approach to federated databases is to integrate the
schema of the participating databases. [62] provides an ap-
proach to schema integration which uses the Candide DL as
the commodcanonical data model. Among others, a human is
charged with the heuristic task of creating an attribute hierar-
chy showing the relationships between attributes appearing in
the classes of the various schemata. For example, given several
databases at the university, a designer might come up with the
following hierarchy (where indentation is used to indicate the
tree structure)
TOP-ROLE
person-identifier

dbl-stud-name
db2 - f ul1 -name

person-number
db 2 - emp #
db3-socsec#

course-identifier

person-name

The (formal and automated) subsumption and disjointness
operations on descriptions use this attribute hierarchy to pro-
vide a list of class pairs that appear to be candidates for com-
parison, because they are equivalent, disjoint or overlapping;
the system then offers to the human user a variety of operators
(including Generalize, Specialize, Delete) that can be used to
restructure and integrate the components of the schema.

Another technique for developing the “right” schema is
proposed in [9], where one starts with individuals and existing
classes, and clusters them into potentially new classes. The
algorithm, related to the “least common subsumer” notions
introduced in [29], is based on the structure of the class defi-
nitions, presented as descriptions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

676 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, OCTOBER 1995

IV. ADDITIONAL USES OF DLS IN
INFORMATION SYSTEMS

Although DLs are natural candidates for describing the
schema of databases, there are a number of additional ways in
which descriptions can be used to help in managing informa-
tion. To see this, we introduce a somewhat more formal view
of Knowledge Base Management Systems (KBMS)-systcms
which maintain and reason with models of some application
domain4 Let us start fiom Levesque’s functional view of a
KBMS [43]: The basic idea is to treat a knowledge base as an
abstract object on which one can perform two kinds of opera-
tions: TELLs and ASKS. TELLS are used to build or modify the
model of the domain being maintained by the KBMS

while ASKS retrieve information
TELL: LTe], x KB 3 KB

ASK: bq X KB + Lhww
The proper specification of a KBMS and its behavior therefore
requires the definition of four things:

0 &e],: a language for describing what we know about the

0 GUq: a language for describing questions that we wish

0 f
0 Query answering: how answers to queries are related to

For example, a reasoner based on First Order Logic (FOL)
could be described by setting &e]] = Lhk = { well-formed
formulae of FOL}, Lh, = {Yes, No, Unknown}, and defin-
ing the answer to some question Q as Y e s (respectively N o)
iff the conjunction of the facts told the KB so far entail Q
(respectively -Q) according to mathematical logic.

Without loss of generality, and with considerable gain in
convenience, we allow a whole host of TELL and ASK opera-
tions, each with possibly different associated languages. Ex-
perience with building large software systems of all kinds,
including knowledge bases, has taught us that it is an error
prone process. Some ways in which errors can be more easily
detected is to allow named abbreviations, to insist on identifi-
ers being declared (so that simple typographical errors can be
detected) and to allow assertions to be made about the valid
and invalid states of the knowledge base. For this purpose, we
distinguish two special kind of TELL operations, DECLARE and
CONSTRAIN. In the FOL case, DECLARE would be used to in-
troduce the predicate names and arities for example, while
CONSTRAIN may state so-called integrity constraints, which
would not be used deduce answers, only to detect errors in
what the system is being told.

The reason for introducing the above terminology is to help
make the following point:

Description languages can be used in any of the languages as-
sociated with a KBMS including s,,, , &I, SA*
and SAnsuur In each of these situations, the logic associated

world;

to learn about;
the language in which answers will be phrased;

what has been told to the KBMS.

4. Nota Bene: This view is adopted strictly for didactic purposes. Using
DLs in a reasoning system in no way commits the developer to such a view.

with the description language(s) in question is used to &$ne
what it means to answer a question.

In retrospect, we have investigated already in Section I11 the
and &,=&. We continue with the other use of DLs in

languages.

A. A Database-Like KBMS
Suppose that we have specified the schema of a small uni-

versity knowledge base, including primitive concepts PER-
SONS, STUDENTS, COURSES, SUBJECTS, SCIENCES,
and roles has -sub j e c t , t eaches , t augh t By, age
and t a k e r s , all but the last of which are (single-valued)
attributes. We are now ready to describe the current state of
the world. We will frst need to tell the database about new
individuals, e.g., introduce a new individual, Crs43 1, by invok-
ing an operator:

Crs43 1 := CREAT-IND().

Information about such individuals is recorded in the data-
base in two ways: by specifying what classes they belong to
(e.g., “Crs431 is a COURSE), and by specifying their inter-
relationships through roles (e.g., “Crs43 1 is taught by Einstein
and is taken by Anna, ...9. For this purpose, we have opera-
tions INSERT-IN and FILL-WITH, which are used as follows:

INSERT-IN(Cd3 1 ,COURSE)
FILL-WITH(Cd3 1 ,taughtBy,Einstein),
FILL-WITH(Cd3 1 ,takers, Anna)
...

Suppose that after several such operations we want to retrieve
some information, by asking a question. Queries are charac-
terizations of those objects which satisfy their conditions. We
have already seen that the natural interpretation of descriptions
was as specifications of sets of individuals: if we want to find
“All courses with at least 10 students taking it, taught by
someone who is in a science department”, then the description
and(COURSE,at-least(10, takers) ,
all(taughtBy,all(in-dept , SCIENCE-DEPT)))

expresses this. The answer to such a query would be a list of
individuals that satisfies the conditions of the query-i.e., the
ones recognized by the query description. Papers such as [65],
[55] , [8], [50], and [25] have investigated the use of DLs as
query languages.

DLs are particularly useful for querying knowledge bases in
situations when the user is not entirely familiar with the con-
tents or structure of the data, or when they are not entirely sure
what question they should be asking. The second situation
arises in data explorationlmining, which is essentially the ac-
tivity of looking for interesting correlations or patterns in large
sets of data accumulated for other .purposes.

In such situations, we find interesting and novel applications
of the fact that descriptions can be classified in a subclass
hierarchy.

0 One can detect incoherent queries-nes which cannot
possibly return any individuals because of the semantics
of the database-and allert the user that this question is
ill-formed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

BORGIDA: DESCRIPTION LOGICS IN DATA MANAGEMENT 677

More generally, in many situations even if a query is co-
herent, when it retums an empty set as answer, it is a
“miss”. In such cases, it is reasonable to consider general-
izing the query slightly until a non-empty answer set is
obtained. The lattice of subsuming descriptions provides
the obvious space to search for such generalizations, and
therefore the system can provide a helping hand in this
task, as illustrated in [3].
The description lattice supports the paradigm of query
specification by iterative refinement, described in [65]
and [SS].
Data exploration involves asking very many queries,
possibly by teams of people, over an extended period of
time. The DL-based KBMS can automatically organize
this large set of queries through the subsumption relation-
ship, thereby allowing users to find identical or similar
queries asked in the past, together with their answers
[24]. This is important if the queries may require a con-
siderably long time to process, or if users associate com-
ments/observations with queries. The operation of classi-
fying a given new description with respect to some set of
previously encountered descriptions is in fact standard in
all DL-reasoners, with various techniques for doing so
surveyed in [46], [67], [7]. But we emphasize that such a
set of classified descriptions forms just a finite sub-

approach, followed in [53], [48], is to model as part of the KB
the relations in the database as well as their relationship to the
concepts in the semantic model, and then build a component
that takes a DL query, transforms it into a query against the
DBMS, and retums the answer. Another approach, suitable in
cases when there is frequent KB access, or for DLs that are not
sufficiently expressive, is to “load” the database into the DL
knowledge base. A straightforward approach to this is likely to
be have unacceptably poor performance, and [161 offers a way
to compile much of the reasoning of the DL classifier into a
sequence of SQL queries, thus taking advantage of the bulk
processing offered by DBMS.

Second, one must deal with the fact that DLs have limited
expressive power. In fact, [70] shows that for all DLs consid-
ered so far, even undecidable ones, concepts can essentially be
translated to FOL formulas with at most 3 variable symbols.
One approach, suggested in [25], is to factor out a “clean” part
of the query (for which subsumption reasoning is performed),
and put the rest of the query in an opaque, “dirty” box. An
altemative, pursued by the LOOM system, is to implement in-
complete subsumption reasoning for a very expressive lan-
guage (which includes FOL as a sublanguage). In either case,
note that the approximate nature of the subsumption relation-
ship does not vitiate most of the advantages introduced earlier
in this subsection.

DECLARE. Queries as descriptions are obviously useful for
view definition, with the same advantages detailed above.
Moreover, finding that the current query is subsumed by some
materialized view may provide a new opportunity for optimi-
zation [25], similar to that envisaged for common sub-
expression analysis for relational queries [38]: one need only
test the query predicate on the individuals in the view. In fact,
by using again the relative complement operation in the lattice
of description, one might find a cheaper test to run on the
members of the view.

DLs are naturally suited for expressing queries (i.e.,
LQ,,~~,,,,,,,~ and for defining views (i.e., L I ~ ~ ~ / ~ ~ J . The subsumption
relationship can be used to automatically organize queries and
views into an “is-a I’ hierarchy through classification, thereby
supporting data exploration and query optimization.

Several research issues arise in the use of descriptions for
querying databases.

First, although DLs offer a convenient technique for model-
ing the semantics of an application domain and the semantics
of the data, legacy data is usually present in some existing
DBMS (at best, a relational one). We must therefore address
the issue of retrieving the answer from such databases. One

INSERT- IN(Ne W - C r S ,
and(COURSE,

a t-least(2 5 , t a k e r s)
all(takers,all(gpa, range(3. 1, 4 . 0))
f i l ls(subject , *AI‘)
al l (taught By,

fills(depar tmen t , Computer S c i)))
1

This extension, though at first glance quite small, has far-
reaching consequences: it allows the KBMS to maintain in-
complete information about individuals. For example, in the
above case, we do not yet know the exact identity of the per-
son who will teach the course, but we can already gather in-
formation about her (e.g., that her d e p a r t m e n t value is
ComputerSci) . More significantly, we can say things about
all (currently unknown) people who will take the course: they
will have gpa in the 3.1 to 4.0 range. This information can be
used in query processing: when a query like “Find all courses
taught by persons in science departments.” is stated, then
N e w - c r s can be returned if question answering includes
checking whether the descriptor of an individual is subsumed
by the query.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

618 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 5, OCTOBER 1995

To assess the significance of this, observe that no database
system can represent the kind of indeterminate information
provided above about N e w - c r s . Database management sys-
tems can currently only handle “null values” for atomic facts
such as strings and integers, and they cannot even reason
completely about such null values. In contrast, a system such
as CLASSIC can represent facts requiring an unbounded number
of distinct nulls (e.g., something having at least 15 fillers for a
role), and it can still answers its questions correctly and com-
pletely in polynomial time. (Of course, CLASSIC does limit the
kinds of questions one can ask!)

This expressive power of DLs is also related to a second
problematic aspect of databases: so-called “view updates”.
Because DBMS translate updates to views into updates to the
base/primitive concepts from which the views were defined,
the set of views that can be updated is extremely restricted. In
contrast, asserting in a DL that some individual belongs to a
defined concept-a view-is maintained as just another fact
about it, and this fact is reasoned with fully. We therefore have

Using DLs in STu/l and using subsumption during query proc-
essing allows one to assert indefinite information in the knowl-
edge base. This supports, among others, the proper treatment
of such traditionally diflcult database issues as null values
and view updates.

This aspect of KBMS based on DLs may explain in part
their success in problems dealing with configuration manage-
ment [52], [68]: configurations are incomplete designs, which
are slowly being built up, yet we want to find out about prob-
lems with them before everything is fully known.

\

C. Using Descriptions in Answers
Traditionally, questions such as “Who teaches N e w - c r s ? ,

or “What is Johnny’s age?, are answered by displaying some
individual value@), looked up in the database. The fact that we
can associate arbitrary descriptions with individuals allows us
to produce easily descriptive answers, representing the terms
we have been told or deduced about these values. For the
above questions we might now get answers such as
and(FACULTY,fills(department ComputerSci)) or
range(1 9 2 7).

In fact, this facility is useful not just when there is incom-
plete information, but also whenever we don’t want to return
lists, because they are too long for example. It has been argued
(e.g., [63]) that in such situations it is appropriate to provide
abstract answers. In the case of DL-based KBMS, this can be
achieved by finding in the lattice of descriptions the least
common subsumer [29] of the set of individuals’ descriptions,
which captures their commonalities.

Finally, in the case of very large schemas or when users are
not fully familiar with the semantics of the domain they are
dealing with, it is useh1 to provide intensional answers to
queries: these display what must hold true of any individual
(existing or not) that would satisfy the query [171. The work of
Devanbu [32] on Software Information Systems provides one
instance where such a facility is useful: when a new software
developer joins a team that has been working on some very
large project over a long period of time, she may not be aware

of the intended stfucture of the code, which is expressed by
many constraints in the schema. By asking for intensional an-
swers, the novice can learn much about this invisible
architecture.

We therefore have
Using DLS in SAmr provides the ability to give descriptive,
abstract or intensional answers, in addition to enumerations of
values.

D. Varying the DLs
In order to make it easier for people to learn to use a DL-

based KBMS, some systems (e.g., CLASSIC) use the same syn-
tax (i.e., description constructors) in the various languages
associated with a KBMS. It is however not necessary to do so.
In fact, because of computational costs, it may be desirable to
allow different languages for different operators. This should
not be too surprising: one can view Relational Databases as
KBMS based on First Order Logic, where the LAsk contains all
formulas, but LTell is restricted to atomic formulas
(corresponding to inserting and deleting tuples), while LhW,
provides only positive atomic formulas.

The approach of varying languages has been advocated in
[43], [42], [25] and has been practiced in systems which use
DLs as query languages (e.g., [55]).

E. Descriptions as Constraints

We have seen already that it is useful to associate with a
primitive concept some necessary conditions that would have
to hold of its individual instances. It turns out that such a facil-
ity is more widely useful: we might have defined the notion of
UNDER-ENROLLED-CLASS as one with at most 5 takers, but
it might be a contingent regulation at our university that such
courses be allowed only at the senior or graduate level. Such a
constraint might be stated using a CONSTRAIN-type operator
CONSTRAIN(<constrained-set>,<constraint-con-
d i t i o n >) , where both arguments are descriptions. For ex-
ample, as a result of
CONSTRAIN(UNDER-ENROLLED-CLASS

all(level70ne-Of(4 5)))

whenever a new course individual is added, if it is inconsistent
with the constraint description associated with UNDER-
ENROLLED-CLASS, an error message would be generated by
the system, and the update would not be allowed.

Note that this use of a constraint is more limited than adding
a logical implication of the form “If x is an UNDER-
ENROLLED-CLASS then x is also an all(leve1, one-
of(Senior , Grad)))”, because such an implication could be
used for deducing new information about individuals, thereby
considerably complicating the processing. (This distinction
between “integrity checking” rules and “deductive” rules first
appeared in deductive databases.)

F. DLs for Stating Rules
A more “active” KBMS can be obtained through the addi-

tion of an operation such as ASSERT-RULE(<lhs-
des crn>,<rhs-des ern>), e.g.,

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

BORGIDA: DESCRIPTION LOGICS IN DATA MANAGEMENT 619

ASSERT-RULE(and(COURSE,fillS(t opi C , AI)),
BORI NG-T H I NG)

This would have the effect that any time an individual is rec-
ognized as a course on A I , it would be added to the concept
BORING-THING. Such rules were first mentioned in connec-
tion with the CONSUL system [47], and have been heavily used
in the LOOM system [45], as well as other recent systems such
as [69] and CLASSIC, while their semantics has been clarified in
[36] through the use of “epistemic operators” dealing with the
“knowledge” of the system. They are less expressive than
standard production rules because their antecedent is often
only a single concept (rather than a relationship between indi-
viduals) but because of their treatment of incomplete informa-
tion, rules based on DLs provide other advantages, including
[69]:

0 classification applied to the antecedent (or even the con-
sequent) of rules can be used to organize them into a hi-
erarchy; this means that the system can help the pro-
grammer find closely related rules-a frequent cause of
errors in rule-based programming;

0 classification can also help implement the usual conflict-
resolution strategy of “apply the most specific rule” by
using the automatic classifier, rather than relying on the
programmer to specify which rule is more specific.

The rules above are not necessarily treated as logical impli-
cation-some systems do not ‘reason with the contrapositive,
nor do they do case analysis (e.g., if B(x) =I D(x) and -, B(x) =I

D(x) then always conclude D(u)). One could obviously add
rules with different kinds of reasoning strategies: ordinary
logical implication, default rules, etc.

In conclusion,
Descriptions can be used in a natural way to specify a limited
set of conditions and actions for a variety of rule languages,
including integrity constraints, triggers, defaults, etc. In all
such cases, subsumption can be used to organize large sets of
such rules, and recognition helps in the firing process.

v. ON THE GENERALITY OF THE DL FRAMEWORK

It is important to point out the generality of the above
framework. First, there is no reason to restrict the notion of
“individual” to mean “object with intrinsic identity”. There-
fore, it is entirely possible to consider mathematical entities
(e.g., integers, n-tuples), programming language values (e.g.,
arrays, procedures), composite values (e.g., lists or trees of
others kinds of individuals) as individuals, and have descrip-
tions that denote sets of such individuals. Second, there is
complete freedom in the choice of term constructors in the
language syntax, and their intended interpretation.

Illustrative of the kind of benefits one gains from this free-
dom are languages for describing actions/plans, and expressing
temporal concepts. For example, [121 introduces special con-
cept constructors for describing classes of temporal intervals.
Thus

after(l98 0) and duration-greater(2, year) and
before(n ow)

refers to all time intervals beginning after 1980, of duration at
least 2 years, which end before the reference time interval
now. Such temporal concepts can then be used with construc-
tors sometime and alltime to describe sets of individuals. For
example, if we abbreviate the above temporal description as a,
then

PROFESSOR and sometime(a,STUDENT)
represents the set of individuals who are professors now and
who were students for a period of at least 2 years between
1980 and now.

We have therefore two more observations:
There is no “universal” set of term constructors. The term
constructors used in a DL may be domain or even application
speczjk.

and
The denotations of concept descriptions need not be atomic
individuals, but could have internal (mathematical) structure.

This is extremely liberating: in talking about courses, there
is no obstacle preventing us from developing a new language,
or extending an existing language, to talk about domain spe-
cific things: for example, if every course has an instructor and
a subject, and there is some subtle inference that needs to be
performed with these, then we could have a term constructor
course(<instructor>,<topic>) . (There is a price of
course for inventing new constructors-we need to specify
how to reason with them and implement this specification!)

VI. COMPLEXITY VERSUS EXPRESSIVENESS

We have already mentioned the strong interest in the DL
community concerning the decidability and complexity of rea-
soning with various DLs. The aforementioned complexity re-
sults, and the specter of being caught between the Scylla of
tractable but inexpressive DL reasoners, and the Charybdis of
rich but computationally intractable languages, has elicited a
variety of responses concerning the design of DLs and their
implementations.

A. Limited Languages
Some authors have argued that DL-based systems need to

respond in polynomial time if they are to be useful as “servers”
to other problem solvers [22], [54]. This led to a class of lan-
guages, including KANDOR and KRYPTON, which had relatively
few constructors, carefully chosen so that subsumption would
be polynomial-time decidable. This approach has been cri-
tiqued [37] on the grounds that if some application needs to
make inferences, and the KBMS is not capable of making
them, these inferences will be implemented somewhere else,
destroying the conceptual coherence of the knowledge base.

B. Complete Reasoners for Intractable Languages
Some researchers [6], [58] feel that as long as the logic is

decidable, it is reasonable to deliver to the users a system that
reasons correctly with it. The main obstacle faced by this ap-
proach is to make the performance of the system be predict-
able, so that users are aware of the forms of knowledge which

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

680 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 5 , OCTOBER 1995

can cause exponential explosion in the time or space used by
the system. We remark that certain worst-case complexity re-
sults-such as the result that just by allowing definitions can
lead to an exponential blow-up during processing [49]-are
not considered to be a problem, because the examples are
pathological and do not arise in practice.

C. Incomplete Implementations of Logics
Systems such as LOOM explicitly acknowledge to their users

that not all inferences sanctioned by the obvious semantics of
constructors are implemented. The difficulty faced by this ap-
proach is to describe to the user the incompleteness. As we
have seen, operational definitions are relatively difficult for
DLs. Other kinds of semantic specification techniques have
been proposed for this purpose, including non-standard deno-
tational semantics such as those in [56], [19], or proof-
theoretic axiomatizations, such as in [13], [14], [57].

D. Providing an “Escape Hatch” in the Language

plete information. They are therefore an alternative approach
to the standard techniques for limiting the expressive power of
First Order Predicate Calculus (e.g., Horn-formulas), which
rely on the form of the formulas most easily characterizable
using the standard logical connectives (negation, disjunction,
quantifiers).

At the same time, the framework of DLs is sufficiently
flexible to admit with relative ease the introduction of new
description constructors, which can be application specific, as
illustrated by such systems as CLASP [31]. This allows DLs to
be tailored to better serve particular applications.

This survey has attempted to show the utility of DLs in de-
scribing the (conceptual) schema of databases. This paper has
argued that, contrary to popular myth in AI, DLs are useful not
only for defining “terminology”. Descriptions can be used in all
the languages associated with a KBMS: for asserting incomplete
information about individuals, for obtaining descriptive or in-
tensional answers, for stating rules and constraints, etc.

ACKNOWLEDGMENTS It is possible to introduce one or more constructors in the
language whose semantics are “opaque” for subsumption rea-
soning, but can still be used for recognizing individuals. For I am grateful to the members of the CLASSIC team, and es-
example, CLASSIC’S test-defined concepts are passed a Lisp or pecially to Ron Brachman, for their collaboration.
C function in order to recognize individuals, but are treated as This research was supported in part by Grant IRI 91-19310
primitives for subsumption. Such constructors are of course fiom the U.S. National Science Foundation. A portion of this
open to abuse, but they have proven to be extremely useful in paper is based on an invited presentation given at IFIP ’92:
practical applications of the CLASSIC system. A. Borgida and P. Devanbu, “Knowledge base management - - -

systems using description logics, and their role in software in-
formation systems,” Znformation Processing 92 (vol. 3), pp.
171-181, Elsevier Science Publishers, 1992, and appears with

E. Extensible KBMS Architectures
The idea is to start with a limited language, but when the

user runs into its boundaries, she can have them expanded suf-
ficiently to accomplish the task at hand. Note that this usually

the permission of IFIP and Elsevier Science B.V., Amsterdam,
The Netherlands.

requires only a subset of the inferences entailed by the obvious
semantics of the new constructors, but that this subset might REFERENCES -
vary to This approach requires a [I] H, Ait-Kaci, ‘‘A lanice theoretic approach to computation bas& on a
modular architecture for DL reasoners which is as easy to ex-
tend as, for example, a syntax-directed translation scheme used

calculus of partially ordered type structures,” PhD thesis, Univ. of Penn-
svlvania. 1984.

in a programming language compiler. Such extensible architec- [2] H Ait-Kaci and A Podelski, “An overview of Life,” Next Generation - - -
tures .are discussed in [151, [5],- and the methodology of pro- Information System Technology: Proc. First Int ’I EasdWest Data Base

Workshop, Springer-Verlag LNCS 504, pp.42-58, 1990.
[3] T.W. Anwar, H. Beck, and S. Navathe, “Knowledge mining by impre-

cise querying: A classification-based approach,” Proc. Eighth ConJ on

viding extensions is illustrated in [141.
Our conclusions in this section are that
The conflicting desires between expressive languages and

paralyzing: there is wide variety of approaches to the problem,

being of concern to users.

Data Eng., Tempe, Ark , Feb. 1992, pp. 622-630.

integrating data from multiple information systems,” Int ’I J. of Intelli-
gent and Cooperative Information Systems, vol. 3, no. I , 1994.

into concept languages,” Proc. IJCAI ’91, Australia, Aug. 1991.
[6] F. Baader and B. Hollunder, “KRIS: Knowledge representation and

inference system,” ACM SIGART Bull., vol. 2, no. 3, pp. 8-14,
June 1991.
F. Baader, B. Hollunder, B. Nebel, and H.-J. Profitlich, “An empirical

systems,” proc. KR ’92, Boston, M ~ ~ , , Oct. 1992.
[SI H.W. Beck, S.K. Gala, and S.B. Navathe, “Classification as a query

processing technique in the CANDIDE semantic data model,” Proc.
F$h IEEE Int ’I Data Eng. Con$, pp. 572-581, Feb. 1989.
H.W. Beck, T. Anwar, and S.B. Navathe, “A conceptual clustering
algorithm for database schema design,” IEEE Trans. on Knowledge and
D~~~ Engineering, vol. 6, no. 3, pp. 3 9 ~ 1 I , June 1994.

[lo] s. Bergamaschi and B. Nebel, “Automatic building and validation of

complexity of reasoning, although real, need not be [41 y. hens , C.Y. Ghee, C.N. H W and c . Knoblock, “Retrieving and

with the ‘kredictabiIify” Of the in?rences and their timing
[5] F, Baader and p, Hanscke, “A scheme for integrating concrete domains

VII. SUMMARY

[7] Description languages provide a variety Of constructors for of optimization techniques for terminological representation
building terms that can be used to express knowledge about
the world. They have found applications in a variety of areas
such as data management, linguistics [27], programming lan-
guages [2], configuration management [68], [52], and knowl-
edge-based software engineering [33]. DLs exploit their spe-
cial-purpose constructors in order to provide SOlUtiOnS to such
difficult problems as View updates and reasoning with incom-

[9]

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

BORGIDA: DESCRIPTION LOGICS IN DATA MANAGEMENT 68 1

complex object database schemata supporting multiple inheritance,”
Applied Intelligence, vol. 4, no. 2, pp. 185-204, 1994.

[I 1] S. Bergamaschi and C. Sartori, “On taxonomic reasoning in concep-
tual design,” ACM Trans. on Database Systems, vol. 17, no. 3, pp.
385442, 1992.

[12] C. Bettini, “A family of temporal terminological logics,” Advances in
Arfi$cial Intelligence: 3rd Congress of IA *AI, Springer Verlag LNCS
no. 728, 1993.

[I31 A. Borgida, “From type systems to knowledge representation: Natural
semantics specifications for description logics,” Int ’I J. of Intelligent
and Cooperative Information Systems, vol. 1, no. I , 1992.

[141 A. Borgida, “Towards the systematic development of terminological
reasoners: Clasp reconstructed,” Proc. Conj on Principles of Knowl-
edge Representation (KR ’92), Boston, Mass., Oct. 1992.

[15] A. Borgida and R. Brachman, “Customizable classification inference
in the ProtoDL description management system,” Proc. ConJ Infor-
mation and Knowledge Management, Baltimore, Md., pp. 482-490,
Nov. 1992.

[I61 A. Borgida and R. Brachman, “Loading data into description reason-
ers,” Proc. ACM SIGMOD Conj on Data Management, Washington,

[I71 A. Borgida, R.J. Brachman, D.L. McGuinness, and L.A. Resnick,
“CLASSIC: A structural data model for objects,” Proc. I989 ACM
SIGMOD Int ’I Conj on Management of Data, June 1989, pp. 59-67.

[IS] A. Borgida and P. Devanbu, “Knowledge base management systems
using description logics, and their role in software information sys-
tems,” Information Processing ’92, Elsevier Science Publishers, vol. 3,

[I91 A. Borgida and P.F. Patel-Schneider, “A semantics and complete algo-
rithm for subsumption in the classic description logic,” J. of Artificial
Intelligence Research, pp, 277-308, 1994.

[20] R.J. Brachman, “A structural paradigm for representing knowledge,”
PhD thesis, Harvard University, Division of Eng. and Applied Physics,
1977. Revised version published as BBN Report no. 3605, Bolt Beranek
and Newman, Inc., Cambridge, Mass., May 1978.

[21] R.J. Brachman and J.G. Schmolze, “An overview of the KL-ONE
knowledge representation system,” Cognitive Sei., vol. 9, no. 2, pp.
171-216, Apr.-June 1985.

[22] R.J. Brachman and H.J. Levesque, “The tractability of subsumption in
frame-based description languages,” Proc. AAAI ’84, Austin, Tex., pp.
34-37, Aug. 1984.

[23] R.J. Brachman, R.E. Fikes, and H.J. Levesque, “Krypton: A functional
approach to knowledge representation,” IEEE Computer, vol. 16, no.

[24] R. Brachman, PSelfridge, L.Terveen, B.Altman, A. Borgida, F. Halper,
T. Kirk, A. Lazar, S. McGuiness, and L. Resnick, “Knowledge represen-
tation support for data archaelogy,” Int’l J. of Intelligent and Coopera-
tive Information Systems, vol. 2, no. 2, pp. 159-186, June 1993.

[25] M. Buchheit, M. Jeusfeld, W. Nutt, and M. Staudt, “Subsumption be-
tween queries in object-oriented databases,” Information @stems, vol.
19, no. 1, pp. 33-54, 1994.

[26] D. Calvanese, M. Lenzerini, and D. Nardi, “A unified framework for
class-based representation formalisms,” Proc. Con$ on Principles of
Knowledge Representation (KR ’94 , Bonn, pp. 109-120, 1994.

[27] B. Carpenter, The Logic of Typed Feature Structures: Applications to
Unification Grammars, Logic Programs, and Constraint Rresolution.
New York: Cambridge Univ. Press, 1992.

[28] T. Catarci and M. Lenzerini, “Representing and using interschema knowl-
edge in cooperative information systems,” Int ’I J. of Intelligent and Coor-
perative Information Systems, vol. 2, no. 4, pp. 375-398, Dec. 1993.

[29] W. Cohen, A. Borgida, and H. Hirsh, “Computing least common
subsumers in description logics,” Proc. of AAAI ’92, San Jose, Calif.,
May 1992.

[30] L. Delcambre and K. Davis, “Automatic validation of object-oriented
database structures,” Proc. IEEE Data Eng. ConJ, Los Angeles, pp. 2-
9, 1989.

[3 11 P. Devanbu and D. Litman, “Plan-based terminological reasoning,”
Proc. ConJ on Principles of Knowledne Reuresentation (KR ’91).

D.C., pp. 217-226, 1993.

pp. 171-181, 1992.

10, pp. 67-73, Oct. 1983.

[32] P. Devanbu, R. Brachman, P. Selfridge, and B. Ballard, “LaSSIE: A
knowledge-based software information system,” Comm. of the ACM,
vol. 34, no. 5, May 1991.

[33] P. Devanbu and M. Jones, “The use of description logics in KBSE sys-
tems,” Proc. 17th Int‘l ConJ on Software Eng., Sorrento, Italy, 1994.

[34] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt, “Tractable concept
languages,” Proc. IJCAI ’91, Australia, pp. 458-463, Aug. 1991.

[35] F. Donini, M. Lenzerini, D. Nardi, and W. Nun, “The complexity of
concept languages,” Proc. KR ’91, Boston, Mass., pp. 151-162, 1991.

[36] F. Donini, M. Lenzerini, D. Nardi, A. Schaerf, and W. Nutt, “Adding
epistemic operators to concept languages,” Proc. KR ’92, pp. 342-353,
Bonn, 1992.

[37] J. Doyle and R. Patil, “Two theses of knowledge representation: Language
restrictions, taxonomic classification, and the utility of representation
services,” Artljcial Intelligence, vol. 48, no. 3, pp. 261-298, Apr. 1991.

[38] S. Finkelstein, “Common expression analysis in database applications,”
Proc. ACMSIGMOD ConJ, Orlando, Fla., pp. 235-245, 1982.

[39] B. Hollunder, W. Nutt, and M. Schmidt-Schauss, “Subsumption algo-
rithms for concept description languages,” Proc. Ninth ECAI, Stock-
holm, pp. 348-353, Aug. 1990.

[40] R. Hull and R. King, “Semantic database modeling: Survey, applica-
tions, and research issues,’’ ACM Computing Surveys, vol. 19, no. 3, pp.
201-260, Sept. 1987.

[41] R. Lecluse and P. Richard, “Modeling complex structures in object-
oriented databases,” Proc. ACM PODS Conf., Philadelphia, Pa., pp.
360-367, 1989.

[42] M. Lenzerini and A. Schaerf, “Concept languages as query languages,”
Proc. AAAI ‘91, pp. 471476,1991.

[43] H. Levesque, “Foundations of a knctional approach to knowledge rep-
resentation,” Artijkial Intelligence, vol. 23, no. 2, pp. 155-212, 1984.

[44] K. von Luck, B. Nebel, C. Peltason, and A. Schmiedel, “The anatomy of
the BACK system,” KIT (Kunstliche Intelligenz und Textverstehen) Re-
port 41, Technical Univ. of Berlin, Jan. 1987.

[45] R.M. MacGregor, “A deductive pattem matcher,” Proc. AAAI ‘87, St.
Paul, Minn., pp. 403-408, 1987.

[46] R.M. MacGregor, “The evolving technology of classification-based
knowledge representation systems,” John Sowa, ed., Principles of Se-
mantic Networks: Explorations in the Representation of Knowledge.
San Mateo, Calif.: Morgan-Kaufman, 1991.

[47] W. Mark, “Rule-based inference in large knowledge bases,’’ Proc. AAAI
’80, Aug. 1980.

[48] E. Mays, C. Apte, J. Griesmer, and J. Kastner, “Organizing knowledge
in a complex financial domain,” IEEE Expert, pp.61-70, 1987.

[49] B. Nebel, “Terminological reasoning is inherently intractable,” Artificial
Intelligence, vol. 43, pp, 235-249, 1990.

[50] B. Nebel and C. Peltason, “Terminological reasoning and information
management,” D. Karagianis, ed., Information Systems and Artificial
Intelligence: Integration Aspects. New York: Springer-Verlag, 1991,

[51] B. Nebel and G. Smolka, “Attributive description formalisms and the
rest of the world,” 0. Herzog and C. Rollinger, eds., Text Understand-
ing in LILOG. New York: Springer Verlag, 1991.

[52] B. Owsnicki-Klewe, “Configuration as a consistency maintenance task,”
W. Hoeppner, ed., Proc. of GWAI ’88. New York: Springer Verlag,

[53] J. Pastor, D. McKay, and T. Finin, “View-concept.: Knowledge-based
access to databases,” Proc. CIKM 92, Baltimore, Md., pp. 84-91, 1992.

[54] P.F. Patel-Schneider, “Small can be beautiful in knowledge representa-
tion,” Proc. IEEE Workshop on Principles of Knowledge-Based Sys-
tems, Denver, Colo., pp. 11-16, 1984.

[55] P.F. Patel-Schneider, R.J. Brachman, and H.J. Levesque, “ARGON:
Knowledge representation meets information retrieval,” Proc. First
ConJ on Artrficial Intelligence Applications, Denver, Colo., pp. 280-
286, Dec. 1984.

[56] P.F. Patel-Schneider, “A four-valued semantics for terminological
logics,” Artrficial Intelligence, vol. 38, pp. 3 19-351, 1989.

[57] V. Royer and J. Quantz, “Deriving inference rules for terminological
logics,” D. Pearce and G. Wegner, eds., Logics in AI, Proc. ofJELIA

pp. 181-212.

1988, pp. 77-87.

- .
Boston, Mass., 1991. ’92. New York: Springer Verl&, pp. 84-10511992.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

682 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5 , OCTOBER 1995

[58] K. Schild, “A correspondence theory for terminological logics-Pre-
liminary report,” Proc. IJCAI ’91, Sydney, Australia, 1991.

[59] M. Schmidt-Schauss, “Subsumption in KL-ONE is undecidable,” Proc.
KR ’89, Toronto, Canada, pp. 42143 1, May 1989.

[60] M. Schmidt-Schauss and G. Smolka, “Attributive concept descrip-
tions with complements,” Artificial Intelligence J., vol. 48, no. 1,

[61] A. Sheth and J. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM Comput-
ingSurveys, vol. 22, no. 3, pp. 183-236, 1990.

[62] A. Sheth, S. Gala, and S. Navathe, “On automatic reasoning for schema
integration,” Int ‘1 J. of Intelligent and Cooperative lnfomation Sys-
tems, vol. 2, no. I , pp. 23-50, 1993.

[63] C.-D. Shum and R. Muntz, “Implicit representation of extensional an-
swers,’’ L. Kerscheberg, ed., Proc. Second Int’l Conf on Expert Data-
base Systems, Benjamin Cummings, 1989, pp. 497-522.

[64] G. Teege, “Making the difference: A subtraction operation for descrip-
tion logics,” Proc. Con$ on Principles of Knowledge Representation
(KR ’94 , pp. 54C550, Bonn, 1994.

[65] F. Tou, M. Williams, R. Fikes, A. Henderson, and T. Malone,
“RABBIT: An intelligent database assistant,” Proc. AAA1 ’82.

[66] W.A. Woods and J.G. Schmolze, “The KL-ONE family,” Computers
and Mathematics With Applications, vol. 23, nos. 2-5, Special Issue on
Semantic Networks in Artificial Intelligence.

[67] W.A. Woods, “Understanding subsumption and taxonomy: A ffame-
work for progress,” John Sowa, ed., Principles of Semantic Network
Explorations in the Representation of Knowledge. San Mako, Calif.:
Morgan-Kaufinan, 1991.

[68] J. Wright, E. Weixelbaum, K. Brown, G. Vesonder, S. Palmer, J. Berman,
and H. Moore, “A knowledge-based configurator that supports sales, engi-
neering and manufacturing at AT&T network systems,” Proc. ConJ: In-
dustrial Applications ofAI (IAAI ’93), pp. 183-193, 1993.

[69] J. Yen, R. Neches, and R. MacGregor, “CLASP: integrating term sub-
sumption systems and production systems,” IEEE Transactions on
Knowledge andData Engineering, vol. 3, no. 1, pp. 25-32, Mar. 1991.

[70] A. Borgida, “On the relationship between description logic and first
order logic queries,” Proc. Con$ Information and Knowledge Manage-
ment, Gaithersburg, Md., pp. 219-225, 1994.

[71] J.M. Blanco, A. Illarramendi, and A. Goni, “Building a federated rela-
tional database system: An approach using a knowledge-based system,”
Int’l J. of Intelligent and Cooperative Information Systems, vol. 3, no.
4, pp. 41545,1994.

pp.1-26, 1991.

Alexander Borgida received his PhD degree in
computer science from the University of Toronto.
He is currently professor of computer science at
Rutgers University. His current research interests
concern the development of information systems
software at the conceptual level, with particular
emphasis on language design and associated
technical support. Among others, he has investi-
gated topics such as persistent exceptions, re-
quirements modeling, knowledge representation
and effective reasoning, and functional specifi-
cations. He has collaborated on the Taxis, Daida,

and Classic projects and serves on the editorial board of several journals.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 11:03 from IEEE Xplore. Restrictions apply.

