
An Overview of Java

The Java Platform:

Java

APIs and libraries

Java Virtual Machine

Java Overview 1

What is Java?

• An object oriented programming language with strong
type-checking and automatic garbage collection.

• A “virtual machine” that performs run-time linking
and run-time verification to guarantee the integrity of
code.

• A set of libraries that abstract user interface issues to
a platform neutral set of operations.

• A system that can support many levels of code:
embedded applications; “applets” that run inside Web
browsers; full-blown applications; or even an operating
system.

Java Overview 2



History

• Began in 1990 with a project for consumer electronic
device controllers.

• 1991: Programming language “Oak” for this project.
• 1992: Separate company (FirstPerson, Inc.) started
for this project, but didn’t thrive.

• 1994: Sun began adapting Oak for the Internet.
• April 1995: Initial release (including HotJava), and
rename to Java.

•May 1995: Netscape agrees to incorporate Java with
Navigator.

• April 1996: Microsoft announces incorporation of Java
into Windows 95.

• Following months: Lots and lots of people announce
Java projects and support.

Java Overview 3

What makes Java so popular?

• Platform independence
• Pure (although slightly incomplete) object oriented
design

• Secure for running untrusted code

Java Overview 4



Is this new?

No!

• Platform independence has been seen many places:
The UCSD P-System, the Zork-language virtual
machine, etc.

• Object oriented languages are in abundance:
Smalltalk, Eiffel, Dylan, etc.

• Secure for untrusted code: Some anti-virus
techniques, restricted system access, etc. (Java’s only
big improvements come in this area)

Java Overview 5

So if it’s all old technology, why all the fuss?

• Timing, timing, timing. Emergence as the web was
“growing up” was perfect timing.

• Familiarity — large base of C++ programmers made
learning curve very short.

• The right combination of technologies.
• Good, free tools: compiler, debugger, and libraries
• Very good and cheap commercial tools: visual
development environments, etc.

• Good side effect of being safe for untrusted code:
safer for untrusted programmers! Strong
type-checking and verification catches many subtle
programmer bugs, increasing programmer productivity.

Java Overview 6



Platform Independence

• Goal is “Write Once, Run Anywhere”TM (yes, that
phrase is a trademark of Sun)

• Don’t have to have a PC version, a Mac version, a
Solaris version, a Digital Unix version, an HP-UX
version, ... One version works on any system that
supports the JVM.

• Still not quite there — but the bugs are being worked
out.

• Absolutely vital to maintain standards that allow Java
code written for one system to work on other systems:
Sun vs. Microsoft lawsuit.

Java Overview 7

Remainder of presentation: How to make programming
more reliable.

Or: What causes program errors and unpredictable
behavior?

Note: Some of the following problems are corrected with
the language Java, and others are corrected in the Java
Virtual Machine.

Java Overview 8



Problem 1: Unchecked pointer arithmetic treats
memory as one big block.

Example:

int var1;

int *ptr = &var1;

int var2 = *(ptr + 100); // This is legal but nonsensical!

Solution 1: No pointers in Java! Reference types in
the Java VM, but cannot be mixed with integers (no
pointer arithmetic), so at compile time can verify that
they will always point to something reasonable.

Related problem/solution: All array bounds are
checked before indexing is performed.

Java Overview 9

Problem 2: Stack problems/overwriting critical info.

Example: (Intel x86 assembly language)

mysubr proc

pop ax

mov ax, 0

push ax

ret

mysubr endp

Solution 2: Stack operations are restricted to be
predictable and bounded to remain in the appropriate
region. Somewhat restrictive, but loss is efficiency not
capability.

Not allowed: (Intel x86 assembly language)

mov bx, 10

mov cx, 0

prloop: xor dx, dx

div bx

push dx

inc cx

cmp ax, 0

jnz prloop

Java Overview 10



Problem 3: Uninitialized variables cause unpredictable
results.

Example:

Object obj; // Assume no constructor that initializes values

int var;

cout << obj.data; // Unpredictable value!

cout << var; // Unpredictable value!

Solution 3: All class fields get an initial, predictable
default value. Local variable initializations verified at
run-time.

Java Overview 11

Problem 4: Memory allocation problems
(pointer/reference not pointing to a valid object but used
anyway).

Example:

char *str;

strcpy(str, "Hello"); // What does str point to?!?

Solution 4: All dereference operators checked at run
time.

Java Overview 12



Problem 5: Memory deallocation problems (memory
not freed properly or used after freeing).

Example 1 (basic problem):

Object *obj = new Object;

// ... use *obj

delete obj;

// ... more stuff

obj->data = 1;

Example 2 (more subtle):

Node *curr = first;

while (curr != 0) {

delete curr;

curr = curr->next; // *curr no longer there!

}

Example 3 (losing allocated memory):

Node *curr = new Node;

curr = first; // What happened to new node?

Solution 5: No explicit deallocation available. All
memory management is through automatic garbage
collection, insuring consistency.

Java Overview 13

Problem 6: Types used inconsistently (at machine
level or through unions in C/C++).

Example:

union {

int ival;

float fval;

} u;

u.ival = 10;

cout << u.fval; // Not really a float value stored there!

Solution 6: Memory locations in Java VM have values
with a type, so not just treated as strings of bits. Type
consistency enforced at run-time (in Sun JDK this is done
through load-time code validation).

Java Overview 14



Problem 7: Changing types/class signatures without
proper recompilation of relevant modules causes “offset
shift”.

Example: Code compiled with this definition

class myclass {

public:

int field1;

float field2;

};

may use memory offset 0 within the object to refer to
field 1. If later changed to

class myclass {

public:

float field2;

int field1;

};

now previously compiled code does not work correctly
because fields have moved!

Solution 7: Java bytecode (i.e., object code) contains
no offsets (which would require pointer arithmetic!), only
name based references resolved at run-time.

Java Overview 15

Problem 8: Overloading integers and booleans allows
incorrect test conditions to slip by.

Example:

if (x = 1)

cout << "x is one!";

Solution 8: Addition of a separate boolean type, which
is required for all test conditions. No casting between
boolean and integer types.

Java Overview 16



Problem 9: At machine level, improperly coded
transfers may not jump to the beginning of an
instruction, causing totally unpredictable results.

Example: (Intel x86 machine code)

0FFF:0100 B80001 MOV AX,0100

0FFF:0103 E83D01 CALL 0243

0FFF:0106 48 DEC AX

0FFF:0107 75FB JNZ 0104

0FFF:0109 C3 RET

Solution 9: All jump targets verified at loading time,
before the code is executed.

Java Overview 17

Problem 10: For untrusted (downloaded) programs,
machine code allows arbitrary OS calls (file modifications,
deletions, etc.).

Solution 10: Only machine interface is through local,
trusted libraries with access screened by a security
manager class.

Java Overview 18



Final Note

These Java/JVM design decisions were made mostly to
protect machine against rogue code or unpredictable
behavior, but also excellent protection against
programmer error!

• It’s difficult to catch all the subtle
machine-failure-type bugs in a C++ program.

• It’s difficult for a subtle machine-failure-type bugs to
get by testing in a Java program.

Of course, logic bugs are still the responsibility of the
programmer!

Java Overview 19


