

Log in | Join now | Help

SEARCH: Builder.com GO

 Home : Architect : Database : The great primary-key debate

 Resources
 Newsletters
 Discussion Center
 White Papers
 Trialware
 Online Book Library

 Featured Product:

The great primary-key debate

by | More from | Published: 3/22/02

Rating: 3.5 (out of 5) | Rate this article | Send us feedback

By definition, a relational database must contain normalized tables, and to be properly normalized, a
table must contain a primary key. Database developers often disagree about whether it’s better to use
naturally occurring data or meaningless values as a table’s primary key. Technically, there is no right or
wrong to this debate—only very strong opinions. We strongly support the creation of primary keys from
meaningless values, which we’ll refer to as surrogate keys. In this article, we discuss the strengths of
surrogate keys and the inherent weaknesses of natural keys.

Primary key defined
Before we enter the debate, we define the
term primary key. A primary key uniquely
identifies each record within a table, but that’s
only half the story. The main purpose of a
primary key is to relate records to additional
data stored in other tables. In this sense, the
primary key is a simple pointer between
related records in different tables. As such,
the primary-key value has no meaning to the
user and no association to the data to which
it’s assigned.

The developer must apply a few rules when
choosing a primary key for each table:

The primary key must uniquely
identify each record.

Página 1 de 3The great primary-key debate

16/11/05http://builder.com.com/5100-6388-1045050.html

A record’s primary-key value can’t be null.

The primary key-value must exist when the record is created.

The primary key must remain stable—you can’t change the primary-key field(s).

The primary key must be compact and contain the fewest possible attributes.

The primary-key value can’t be changed.

Note that the word must in the above list doesn’t mean perhaps or most of the time—must is absolute.
That doesn’t mean you can’t break the rule; it just means your application won’t adhere to the relational
database model if you choose to break these established rules. In addition, even though relational
database theory requires a particular condition, don’t expect the relational database system to enforce
it as you’re developing your application—that’s up to you. For more complete information on the
relational database model, normalization, and primary keys, visit the following Web sites:

Database Normalization – Definitions

The University of Texas at Austin

Natural keys break the rules
Now, let’s see how natural keys stand up to the above rules. To fulfill relational database rules, a table
can’t contain duplicate records. That means at least one attribute must uniquely identify each record.
Let’s suppose a table stores employee information, including the employee’s name, birth date, Social
Security number, and hire date. There should be only one record for each employee.

Initially, the name appears to be the perfect candidate for a natural primary key, but let’s take a closer
look. For starters, you can’t create the record until you know the employee’s name, because the
primary key can’t be null. Therefore, you can’t enter any of the employee’s data until the proper name
is known. (You would probably avoid entering the data without the name anyway, but that’s not always
the case. For instance, Social Security number might be another good candidate for a natural primary
key, but that piece of information is often the last to be tracked down.)

Primary keys can consist of more than one field, so storing the first and last name separately isn’t a
problem. However, the name might not be unique to your company, and even if it is, it might not remain
that way. As soon as you have two employees with the same name, the primary key must be expanded
to at least three fields, and you find yourself breaking a rule.

Next Jump to Page: 1 2

Página 2 de 3The great primary-key debate

16/11/05http://builder.com.com/5100-6388-1045050.html

Log in | Join now | Help

SEARCH: Builder.com GO

 Home : Architect : Database : The great primary-key debate

 Resources
 Newsletters
 Discussion Center
 White Papers
 Trialware
 Online Book Library

 Featured Product:

The great primary-key debate
Page 2 of 2

Correcting errors
Let’s further complicate the example by supposing that you enter the name incorrectly. Initially, this
doesn’t seem like such a big problem; you simply correct the value. But remember, you’re not
supposed to change the primary-key value. Doing so often violates referential integrity if there are
related records. With referential integrity features enabled, you can usually update a primary-key value,
and the data engine will update related values automatically. But just because you can update a
primary-key value doesn’t mean you should, and you definitely shouldn’t allow the uneducated user to
do so. A primary-key value shouldn’t be subject to data entry errors, because changing the value
violates a rule.

In our example, correcting a misspelled name
probably won’t have too many repercussions.
But suppose your primary key is based on a
purchase-order number. When you try to
correct an incorrectly entered value, you
might learn that the correct purchase-order
number already exists. Now you’ve got a
problem that your application’s referential
integrity feature isn’t equipped to resolve. Any
time a primary key depends on external data,
you risk typographical errors.

Other problems can crop up with a key based
on a purchase order or similar information. A
change in business could change the value’s
format by adding or deleting characters or
even completely changing the nature of the
value. This type of change is dictated by
business and is beyond your control. Imagine
your boss’ surprise when he or she learns your order and inventory application can’t integrate a new
company policy on order numbers without a complete overhaul. For this reason, we recommend you
select a value that you can control and maintain. You will never be able to control natural data.

Página 1 de 4The great primary-key debate

17/11/05http://builder.com.com/5100-6388-1045050-2.html

Surrogate keys comply with the rules
Clearly, using a natural key as your primary key poses more than a few problems. Now, consider an
incrementing value field as the employee table’s primary key and see how it measures up. (You can
use an expression to create the incrementing value or depend on the database program if it has an
auto-incrementing data type.) Most importantly, the value will always be unique. Since the system
generates the value, you’ll avoid data entry (and other human) errors. In addition, the value will always
exist at the time the record is entered, so the primary-key value will never be null.

A surrogate key is immune to changes in business. In addition, the key depends on only one field, so
it’s compact. The auto-incrementing field provides a unique, stable, and compact primary key.

Other arguments debunked
Many database development systems apply a unique index to a primary key, which eliminates
duplicate records—the system simply won’t accept a duplicate. However, you can apply a unique index
manually; you don’t need a primary key for indexing. A manually applied index will consume a little
more overhead than the primary key’s index, but it is well worth the small drain on your resources.

Some developers think a primary key should identify the record by association. In other words, the user
should readily recognize that the primary-key value “Jane Smith” relates to the record for the employee
Jane Smith. If the primary-key value for Jane Smith is a meaningless value, such as an auto-
incremented value, there’s no way to associate that value to Jane Smith’s information. The truth is, no
rule requires any association between the primary-key value and the record.

In a well-designed database, users never need to see a primary-key value. In fact, a user need never
know the primary key even exists. Used correctly (to establish relationships), primary-key values are
useless to the user, since your application maintains the relationships behind the scenes. In fact,
surrogate keys work well precisely because there isno association between the value and the record.
No matter what happens to the business or the entity, the surrogate key remains neutral.

Keeping score
When comparing the two types of keys side by side, natural keys lose, as Table A demonstrates. Data
is just that—data. Data shouldn’t be used as a system pointer, because these items are subject to input
error and are beyond the control of the developer. Programmatically or system-generated keys are
stable, they’re not subject to input errors, and they’re never null. They provide the perfect pointer to
related data.
Table A
Rule Natural Key Surrogate Key
The primary key must uniquely identify
each record.

•••••
But subject to input and
other human errors

•••••
System-generated value
is always unique

The primary key can’t be null. •••
Can’t enter record until

•••••
Generated by system

Página 2 de 4The great primary-key debate

17/11/05http://builder.com.com/5100-6388-1045050-2.html

Natural vs. surrogate keys

The single-most important issue facing the database developer is good design. If the foundation is
weak, so is the building. To avoid future problems and subsequent (and perhaps convoluted) repairs,
we recommend that you use surrogate keys. This simple design choice is one of the easiest ways to
provide your application with a strong, stable, yet flexible foundation.

value is known when record is created

The primary key must exist when the
record is created.

•••
Can’t enter record until
value is known

•••••
Generated by system
when record is created

The primary key must remain stable—
you can’t change the primary-key
field(s).

•
Natural keys are subject
to business rules and
other outside influences.

•••••
Surrogate keys are
neutral to the
application’s function and
the data.

The primary key must be compact and
contain the fewest possible attributes.

•••
A natural key can consist
of many fields.

•••••
Surrogate key is always
just one field

The primary-key value can’t be
changed.

•
Natural data often
changes.

•••••
No reason to change a
meaningless value

• Doesn’t comply uu ••• Often fails, but can be done uu ••••• Always meets requirement

Prev Jump to Page: 1 2

 Related E-newsletters:

When you join Builder.com,
you'll have access to these great
email newsletters
Builder Bulletin
Web Development Zone

Página 3 de 4The great primary-key debate

17/11/05http://builder.com.com/5100-6388-1045050-2.html

