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Abstract - Method engineering for information system development is the discipline to construct new advanced 
development methods from parts of existing methods, called method fragments. To achieve this objective, we need 
to clarify how to mode1 the existing methods and how to assemble method fragments into new project-specific 
methods, so-called situational methods. Especially, to produce meaningful methods, we should impose some 
constraints or rules on method assembly processes. In this paper, we propose a framework for hierarchical method 
modelling (meta-modelling) from three orthogonal dimensions: perspectives, abstraction and granularity. 
According to each dimension, methods and/or method fragments are hierarchically modelled and classified. 
Furthermore, we present a method assembly mechanism and its formalization as a set of rules. These rules are 
both syntactic and semantic constraints and presented in first order predicate logic so that they can play an 
important role in the assembly process of syntactically and semantically meaningful methods from existing 
method fragments, The benefit of our technique is illustrated by an example of method assembly, namely the 
integration of the Object Model and Harel’s Statechart into Objectcharts. 0 1999 Published by Elsevier Science 
Ltd. All rights reserved 
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1. INTRODUCTION 

The size and complexity of projects for developing information systems are becoming larger and more 
complicated. Therefore, development methods and supporting tools turn out to be one of the most 
significant key factors to achieve great success of development projects. Until now, many methods such 
as structured analysis/design [8] and object-oriented analysis/design [20] have been proposed and many 
textbooks have been published. The information-technology industry is putting the existing methods and 
corresponding supporting tools into practice in real development projects. However, much time and effort 
is spent on applying the methods effectively in these projects. One of the reasons is that contemporary 
methods are too general and include some parts, which do not fit to the characteristics of real projects and 
their contexts. In fact, according to [22] that investigated the activities to apply methods to real projects, 
many practitioners took time to devise the adaptation of methods to their projects before starting the 
projects. To enhance the effect of methods, for each of real projects, we need to adapt the methods or 
construct the new ones so that they can fit to the project. 

Method Engineering, in particular Situational Method Engineering [4, 10, 131 is the discipline to build 
project-specific methods, called situational methods, from parts of the existing methods, called method 
,fiagments. This technique is coined method assembly. In fact, many methods can be considered to be the 
result of applying method assembly. For instance, OMT [20] has been built from the existing fragments 
Object Class Diagram (extended Entity Relationship Diagram), State Transition Diagram, Message 
Sequence Chart and Data Flow Diagram, all originating from other method sources. This example shows 
that method assembly could produce a powerful new method from the existing method fragments. 

TO assemble method fragments into a meaningful method, we need a procedure and representation to 
model method fragments and impose some constraints or rules on method assembly processes. If we 
allow assembly arbitrary method fragments, we may get a meaningless method. For example, it makes no 
sense to assemble Entity Relationship Diagram and Object Class Diagram in the same level of 
abstraction. Thus, the modelling technique for method fragments, so called meta-modelling technique 
should be able to include the formalization of this kind of constraints or rules to avoid producing 
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meaningless methods. 
Several researchers applied adequate meta-modelling techniques based on Entity Relationship Model 

[3, 18, 261, Attribute Grammars [15, 251, Predicate Logic [3, 18, 191 and Quark Model [l] for various 
method engineering purposes (see Section 6). Some of these works discuss the inconsistency of products 
when we assemble several methods into one. However, none of them referred to the method assembly 
function itself yet. Song investigated existing methods, such as OMT and Ward/Mellor’s Real Time SDM 
[30], and classified the way various methods are put together [25]. Guidelines or rules to assemble 
methods were not elaborated in this study. Furthermore, as discussed later in Section 6, his classification 
is fully included in ours. 

In this paper, we propose a framework for hierarchical meta-modelling from three orthogonal 
dimensions: perspective, abstraction and granularity. According to each dimension, methods and method 
fragments are hierarchically modelled and classified. According to this classification of method 
fragments, we can provide the guideline for meaningful method assembly. That is to say, we can suggest 
that method fragments, which belong to a specific class, can be meaningfully assembled. For example, we 
can sufficiently construct a meaningful method from method fragments with the same granularity level. In 
another example, it is not preferable to assemble the method fragments belonging to the same specific 
category such as Entity Relationship Diagram and Object Class Diagram, as the latter can be seen as an 
extension of the former. These kinds of guideline and constraints can be formalized as a set of rules based 
on our multiple hierarchical dimensions. These rules can be presented in first order predicate logic and 
play an important role on clarifying method assembly mechanism. 

This paper is organised as follows. In the next section, we begin with illustrating a simple example of 
the method fragment Statechart and introduce three orthogonal dimensions for classification of method 
fragments. We also discuss the semantics of method fragments that is provided by an ontology technique 
in the section. Section 3 presents method assembly by using an example of assembling Object Model and 
Statechart into the new method fragment Objectchart. This example suggests to us what kind of 
guidelines or constraints are required to method assembly. Based on the guidelines and/or constraints that 
we extracted from this example, we can list up the requirements of method assembly, and generalize these 
guidelines and constraints following the requirements and formalize them in Section 4. Sections 5 and 6 
summarize related work and our work respectively. 

2. A CLASSIFICATION FRAMEWORK FOR METHOD FRAGMENTS 

2. I. Method Fragment Example in the Product Perspective 

We begin with an example of the description of the method fragment of Harel’s Statechart. Statecharts 
can be seen an extension of finite state transition diagram to specify reactive systems [9]. To avoid the 
explosion of the number of states occurring when we specify complicated systems with usual state 
transition machines, it adopted two types of structuring techniques for states, i.e. hierarchically 
decomposition of states: one is called AND decomposition for concurrency, and the other one is OR 
decomposition for state-clustering. The description of the method fragment is illustrated in the meta- 
model in Figure 1 in the notation of Entity Relationship Attribute Diagrams. (To avoid confusion, we use 
the terms concept, association and property in method fragments instead of entity, relationship and 
attribute.) Roughly speaking, any method has two fundamental elements; one is products and their 
structures, and the other one is procedures and their execution order to develop the products. On account 
of brevity, we pick up the only conceptual structure of Statechart products in this figure. The word 
“conceptual” means that the description does not include the notation of Statechart diagrams, e.g. we use 
ovals for expressing states, etc. 

The Statechart technique comprises four concepts: State, Transition, Event and Firing condition. If a 
firing condition associated with a transition holds, the transition can occur and the system can change a 
state (called source state) to a destination state. During transition, the system can output or send an event 
to the other Statecharts. Firing conditions can be specified with predicates and/or receipt of these events. 
So we can have four associations among the three concepts, and two associations on the state concept for 
expressing AND decomposition and OR decomposition. Note that the meta-model does not include 
representational information, e.g. a state is represented in a rounded box in a diagram, and events are 
denoted by arrows. We define this kind of information as another aspect of method modelling and discuss 
it in the next section. 



META-MODELLING BASED Assembly Techniques for SITUATIONAL Method Engineering 21 I 

AND-decomposition 
Event 

is source of 

State ) Transition 
W 

is destination of 

Firing 

OR-decomposition Condition 

Fig. I : Statechart Method Fragment 

2.2. ClassiJication ofMethod Fragments 

Method fragments are classified according to the dimensions perspective, abstraction level, and layer 

of granularity. 
First, the perspective dimension of the classification considers the product perspective and the process 

perspective on methods. Product fragments represent deliverables, milestone documents, models, 
diagrams, etc. Process fragments represent the stages, activities and tasks to be carried out. As mentioned 
in Section 2.1, Figure1 is a description of Statechart method in the product perspective. 

The abstraction dimension comprises the conceptual level and the technical level. Method fragments 
on the conceptual level are descriptions of information systems development methods or part thereof. 
Technical method fragments are implementable specifications of the operational parts of a method, i.e. 
the tools. Some conceptual fragments are to be supported by tools, and must therefore be accompanied by 
corresponding technical fragments. One conceptual method fragment can be related to several external 
and technical method fragments. The conceptual method fragment of Statechart in the product perspective 
has been shown as Figure 1, whereas the examples of the corresponding technical fragments are notation 
of Statechart diagrams and the STATEMATE tool for editing Statecharts [9]. 

One of the most important and main discriminating properties of method fragments is the granularity 

layer at which they reside. Such a layer can be compared with a decomposition level in a method. A 
method, from the process perspective, usually consists of stages, which are further partitioned into 
activities and individual steps. A similar decomposition can be made of product fragments, with the entire 
system at the top of the tree, which is subsequently decomposed into milestone deliverables, model, 
model components, and concepts. Research into several applications of method engineering [3, 51 shows 
that methods can be projected on this classification. A method fragment can reside on one of five possible 
granularity layers: 

Method, which addresses the complete method for developing the information system. For instance, 
the lnformafion Engineering method resides on this granularity layer. 

Stage, which addresses a segment of the life-cycle of the information system. An example of a 
method fragment residing on the Stage layer is a Technical Design Report. Another example of a 
Stage method fragment is a CASE tool supporting Information Engineering’s Business Area 
Analysis [ 171 stage. 

Model, which addresses a perspective [19] of the information system. Such a perspective is an 
aspect system of an abstraction level. Examples of method fragments residing on this layer are the 
Data Mode/, and the User Interface Model. 
Diagram, addressing the representation of a view of a Model layer method fragment. For instance, 
the Object Diagram and the Class Hierarchy both address the data perspective, but in another 
representation. The Statechart resides on this granularity layer, as well as the modelling procedure 
to produce it. 

Concept, which addresses the concepts and associations of the method fragments on the Diagram 
layer, as well as the manipulations defined on them. Concepts are subsystems of Diagram layer 
method fragments. Examples are: Entity, Entity is involved in Relationship, and identify entities 
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2.3. Semantics of Method Fragments 

Description of semantics of method fragments is one of the major problems in Situational Method 
Engineering. To alleviate semantic problems, method fragments are described in terms that are defined as 
complete and unambiguous as possible. Assembly should also be based on the semantics, and ideally 
pragmatics, of each method fragment involved, rather than on abstract or concrete syntax. One way to 
achieve this, is to characterize method fragments with as many properties as possible. The problem with 
this approach is, however, that there are few relationships defined between properties. Moreover, 
semantics of property value types are in most cases of a rather coarse granularity, which makes them less 
suitable to provide method fragment semantics. And third, completeness of a description in terms of 
individually defined properties is hard to be proved. 

Some researchers proposed how to provide formal semantics for method fragments and some of them 
have used an ontology or an anchoring system [6]. In this approach, method fragments can be explained 
in a common terminology, where each term expresses an atomic semantic primitive and we have a 
common and unambiguous interpretation for it [13, 27, 291. As an example, consider the meaning of the 
concept “Attribute” that appears in the Object Model in Figure 3. According to the well-known definition, 
it is a property that objects belonging to a specific class have. It also has a set of data whose element is 
set to it at a point of time, and the element, i.e. data value describes the object at that time. Thus we can 
have the terms “property ” “data set” and “description (describe)” as semantic primitives and use them to , 
express the meaning of “Attribute”. 

The way to extract and classify semantic primitives of methods, i.e. common terminology, is one of 
the important issues in this kind of techniques. Although what semantic primitives on the ontology we 
should use is out of scope in this paper, we should show how we can use this kind of system in our 
assembly technique. We adopted the MDM (Methodology Data Model) that has been defined by 
Harmsen [13], since it is suitable for diminishing the above issues. In the rest of this subsection, we 
introduce his system very briefly, however sufficiently to understand how to embed semantic aspects of 
method assembly to our framework. 

Method fragments should be anchored, i.e. described in terms of unambiguously defined concepts 
and, possibly, associations of an anchoring system. An anchoring system of method fragments is a 
restricted set of well-defined atomic primitives. Figure 2 illustrates how to provide the semantics of 
method fragments by using an anchoring system. Method fragments consist of three sets; a set of 
Concepts CN, a set of Associations A and a set of Attributes At, as shown in the example of Figurel. Each 
of their elements is mapped into a set of the semantic elements on an’ anchoring system with the map a. 

For example, a(“Attribute”) = {property, data set, description} where “Attribute” is a concept of Object 
Model method fragment, and property, data set and description are semantic concepts on the anchoring 
system. The semantic concepts constitute a network with the function Cp and it restricts the meaning of 
associations among the concepts of method fragments, such as “has” in Figurel. 

The anchoring system can be formally defined as follows: Let r be the anchoring system. a: M + 

@c the anchoring,or interpretation function, maps method fragments in A4 on a subset of the anchoring 

system. Because mappings need to be unambiguous, a is a bijection. In principle, the anchoring system 
prescribes the set of possible method fragments, and is therefore limitative. 

An ontology for method fragments is an anchoring system A = &No, Ao, CD> where CNo is a set of 
unambiguously defined concepts (called semantic concepts) of IS engineering methods, A0 a set of 
associations (called semantic associations), and a,: CNo x A0 + CNO a function relating elements of CNo 
with elements of CNo through a semantic association that is an element of Ao. The ontology can be 
captured as a kind of semantic network. As mentioned before, we use the semantic concepts and semantic 
associations that have been defined in MDM, in order to organize our ontology. By using his system, for 
example, we can organize anchoring functions for Statechart shown in Figure 1 and Object Model in 
Figure 3 as follows. 
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Concept :CN 
Association : A 

Attribute : At 

Method Fragment Description 

(Meta Model) 

Semantic Concept : CNo / 
Semantic Association : AO 

@(C 1 ,A 1 )c? 
Ontology 

Anchoring System A 

Fig. 2: Semantics of Method Fragments and Anchoring System 

[Statechart] 
a(State) = (State), a(Transition) = (Transition), a(Event) = (Event), 

a(Firing Condition) = (Condition), a(is source of) = (Change, Source), 

a(is destination of) = (Change, Destination, Effect), 

a(AND-decomposition) = (Description, Aggregation), 

a(OR-decomposition) = (Description, Aggregation, Choice), 

a(has-Event-Transition) = (TransitionTrigger), 

a (has-Event-Firing Condition) = (Description) 

[Object Model] 
a(Object) = (Object, Activity, Actor), a(Class) = (Object Class), 

m a(Attribute) = (Property, Data set), 

a(Service) = (Function, Activity), a(Association) = (Association), 

a(has-Class-Object) = (Abstraction), a(has-Class- Service) = (Capability, Manipulation), 

a(has-Class-Attribute) = {Contents, Description), a(participate in) = {Involvement) 

Since the several associations with the same name occur, e.g. “has”, we explicitly specify the concepts 
that participate in them in the above definitions, e.g. “has-Class-Object” (the association “has” between 
“Class” and “Object”). 

The Appendix A shows an extraction of MDM that is related to the above example and is sufficient to 
understand this paper. See [ 131 for a complete definition. 

Anchoring systems formally capture the semantics of method fragments as much as possible. They 
prescribe the possible relationships between the elementary building blocks of method fragments, and 
they provide a uniform definition of these building blocks. It is important to notice that there still remains 
some non-formalisable part in the anchoring system: the definition of the concepts in natural language. 
The authors welcome suggestions to make progress on this boundary. 
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Fig. 3: Object Model Method Fragment 

3. METHOD ASSEMBLY: EXAMPLE AND RULES 

3.1. Method Assembly in the Product Perspective 

In this section, we introduce a simple example of method assembly - assembling Object Model in 
Object-Oriented Analysis/Design and Statechart to Objectchart. Objectchart, proposed in [7], is an 
extension of Statechart to model reactive systems from an object-oriented view. Our framework of 
method assembly can explain how Objectchart was composed from the existing method fragments Object 
Model and Statechart. 

The Object Model specifies a system as a set of objects communicating with each other. Objects have 
their specific attributes and change their values through inter-object communication. By sending 
messages to the other objects (or itself) an object requires of them (or itself) to provide the service that 
they (or it) encapsulate. The objects that are requested perform their service and may change their 
attribute values and/or return the computed results. Objects having the same attributes and services are 
modelled with a Class, which is a kind of template. Figure 3 shows the method fragment description of 
the Object Model at Diagram layer from conceptual level and product perspective. 

Suppose now we have to produce Objectchart by assembling these two method fragments, i.e. the 
method models of Figures 1 and 3. Figure 4 shows the resulting method fragment of Objectchart in the 
same level, perspective and layer. As for this assembly process, we should note that the two method 
fragments belong to the same category in our three dimensional classification: conceptual level in 
abstraction, Diagram layer in granularity, and product in perspective. In addition we have product 
perspective of Objectchart in conceptual level and in Diagram Layer. Thus the method fragments with the 
same category can be assembled and we can get a new method with the same category. 

1) 
2) 

3) 
4) 

The Statechart and Object Model are amalgamated to Objectchart by the following constructs: 

A Class has a Statechart, which specifies its behaviour. 
Attributes of a Class may be annotated to States in its Statechart. This indicates which attribute values 
are meaningful or visible in a specific state. 
An Event issued during a Transition is a request of a Service to the other Object. 
A Transition may change an Attribute value of an Object. 

The first three constructions allow us to introduce new associations “has” between Class and State, “is 
annotated with”, between Attribute and State, and “consist of’. The concept Object participating in 
“consist of’ stands for the object whose service is required, i.e. a receiver of the event. Furthermore, we 
employ the new concept “Post condition” for specifying the change of attribute value when a transition 
occurs. Therefore, post conditions can define the effect of service-execution on attributes. 

Let’s explore what manipulations were made and what kinds of constraints could be considered in this 
example. The basic manipulations that we applied here are: 
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1) Addition of a new concept (Post condition), 
2) Addition of a new association (is_annotated_with, consists_of, has), 
3) Addition of a new property (is-hidden). 

First of all, when we assemble two method fragments, we should introduce at least one new concept 
or association. If we did not introduce anything, it would mean that a method fragment was completely 
included in another one. This case might be meaningless because we could not find the effect of this 
method assembly and the result was the same as the containing method fragme’nt. This applies for the 
meaningless example of assembling ERD and Object Class Diagram (the super class of ERD), which we 
mentioned in Section 1. Furthermore, at least one connection between the two method fragments through 
newly introduced associations and/or concepts should be introduced, because the two method fragments 
are to be conceptually connected by the method assembly. Consequently, these constraints can be 
generalized as 

Statechart Object Model 

! 1 

has 

Tiring Condition 

Fig. 4: Objectchart: Method Assembly in the Product Perspective 

Rule 1) At least one concept, association or property should be newly introduced to each method 
fragment to be assembled, i.e. a method fragment to be assembled should not be a subset of 
another. 

Rule 2) We should have at least one concept and/or association that connects between two method 
fragments to be assembled. 

Rule 3) If we add new concepts, they should be connectors to both of the assembled method fragments. 

Rule 4) If we add new associations, the two method fragments to be assembled should participate in 
them. 

Moreover, the newly introduced associations should be meaningful, i.e.: only concepts that are 
allowed to be connected, can be connected. To determine this, semantics of concepts has to be known, 
which can be achieved by using an ontology (see Section 3.4). 

The following additional rules can easily be determined, whose explanation we omit. 
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Rule 5) There are no isolated parts in the resulting method fragments. 

Rule 6) There are no concepts which have the same name and which have the different occurrences in a 
method description. 

These rules apply for method fragments in the conceptual level and diagram layer. If the method fragment 
to be assembled is related to the other levels or layers, the effect of assembly propagates to the others. It 
means that we should have the other types of rules. For example, the different concepts on the conceptual 
level should have different representation forms (notation) on the technical level. We will discuss a more 
elaborated style of rules and their formalization in Section 4. 

3.2. Method Assembly in the Process Perspective 

In the previous example, we illustrated product-perspective method assembly. Next, we turn to 
discuss the process-perspective method assembly also with the help of an example. Suppose we have the 
process descriptions for Object Model and for Statechart in Diagram layer at our disposal, e.g. for Object 
Model: 

Draw an Object Model 
0 1) Identify objects and classes, 
02) Identify relationships, 
03) Identify attributes and services 

and for Statechart: 

Draw a Statechart 
S 1) Identify states, 
S2) Identify state changes and their triggers, 
S3) Cluster states, and so on. 

According to [7], the recommended procedure for modelling Objectcharts is as follows: 

Draw an Objecfcharf 
OCl) Draw an Object Model, 
0C2) For each significant class, Draw a Statechart, and 
OC3) Refine the Statechart to an Objectchart by adding post conditions and annotating states of the 

Statechart with attributes. 

This procedure is constructed from the two process method fragments, Object Model (step OCl)) and 
Statechart (step 0C2)) and seems to be natural. In more detail, between steps OCl) and OC2), we find 
that we should perform the activity of identifying the relationship “has” between Class and State shown in 
the Figure 4. The concept “Post condition” and its associations, say “refer to”, and the association “is 
annotated with” are identified while the step 0C3) is being performed. It means that newly added 
concepts and associations to connect the product-perspective method fragments to be assembled should 
not be identified until the associated concepts are identified. In fact, it is difficult for us to identify the 
association “has” between classes and states before we have identified classes or identified states and we 
should avoid this execution order of the activities (see also Figure 5). 

Rule 7) The activity of identifying the added concepts and associations that are newly introduced for 
method assembly should be performed after their associated concepts are identified. 

The rule mentioned above provides a criterion to make meaningful and useful procedures from 
manipulations on concepts and associations in Diagram Layer. Similarly, we can easily have the rule : we 
should not identify any associations until we identify their associated concepts in Diagram Layer. So the 
first step of method procedure should be identifying some concepts. This results from the natural 
execution order of human perception. 
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Another type of rules relates to the input/output order of products to activities. For example, the 
activity step 02) in Object Model consumes the identified objects and classes as its inputs that are 
produced by the step 01). The point in method assembly processes is what input-output relationships are 
added and/or changed. In this example, as shown in Figure 4, the step OC2) in Objectchart, which 
resulted from steps Sl), S2) and S3) in Statechart, should consume the identified classes as its inputs. 
They are the output of the step 01) in Object Model, i.e. another method fragment. Therefore we can 
have the following rule: 

Rule 8) Let A and B be the two method fragments to be assembled, and C the new method fragment. In 
C, we should have at least one product which is the output of A and which is the input of B, or 
the other way round. 

This rule means that either of the method fragments to be assembled, say A, should produce input to the 
activities of B in the new method C. More examples of method assembly rules in process perspective will 
be shown in Section 4. 

(W 
0C3: Refine State&arts 

Draw an Objectchart (C) 

Fig. 5: Method Assembly in the Process Perspective 

3.3. Discussion of Method Assembly on Three Dimensions 

As we have shown in Section 2, method fragments can be considered on three dimensions: 
perspective, abstraction level and granularity layer. These dimensions can be used to improve, speed up, 
and simplify the method assembly process. We illustrate this with the following example. Assembling 
Object Model and Statechart, which are product fragments at the Diagram layer and at the conceptual 
level, implies the assembly of method fragments addressing the other perspective, abstraction level, and 
granularity layers. Associated with the Statechart and Object Model product fragments are modeling 
procedures, i.e. process fragments. The assembled modeling procedure results from the components of 
each of these two process fragments. Some of the rules that apply are: 
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Rule 9) Each product fragment should be produced by a “corresponding” process fragment. 

Rule 10) Suppose a product fragment has been assembled. The process fragment that produces this 
product fragment consists of the process fragments that produce the components of the product 
fragment. 

Also associated with the conceptual method fragments mentioned above are technical method 
fragments, such as Object Model and Statechart diagram editors, a repository to store object models and 
Statecharts, and a process manager to support the modeling procedures for object models and Statecharts. 
Similarly, the assembly of these technical method fragments results from the assembly of the 
corresponding conceptual method fragments: 

Rule 11) A technical method fragment should supports a conceptual method fragment. 

The assembly of fragments at the Diagram layer has also implications for the components of these 
fragments, which are at the Concept layer. In general, assembly of two method fragments results in the 
assembly of method fragments of lower granularity layers. As we have seen in Section 3.1, the assembly 
of Object Model and Statechart results in the assembly of Service and Event, Class and State, and 
Attribute and Firing Condition. A rule that applies to this is: 

Rule 12)If an association exists between two product fragments, there should exist at least one 
association between their respective components 

We have taken in the above example the assembly of conceptual product fragments at the Diagram 
layer as a starting point. However, the starting point can be at any combination of perspective, abstraction 
level, and granularity layer. Obviously, whatever starting point is used, the result of one assembly action 
is a cascade of other actions within the three-dimensional framework. 

3.4. Semantic Aspect of Method Assembly 

Note that all of the rules mentioned in Sections 3.1, 3.2 and 3.3 are syntactical constraints on 
descriptions of method fragments written in Entity Relationship Model or Flow Chart Model. To 
formalize actual method assembly processes more rigorously and precisely, we should consider some 
aspects of the meaning of method fragments. In the example of Objectchart, we associated the concept 
“Attribute” with “State”. The question is in whatever method assembly we can always do it. The answer 
depends on the semantics of these concepts in the method fragments. Although how to specify the 
semantics of method fragments for method assembly is not an aim of this paper, we need to show how to 
combine with our assembly rules the existing technique for providing semantics such as ontology and 
anchoring systems. In Section 2.3, we introduced one of the techniques for providing formal semantics 
for method fragments, i.e. an anchoring system. We adopt the system that was proposed by Harmsen [ 131. 

The anchoring system specifies which associations can connect to which concepts by using the 
function @. For example, the semantic concept “Object Class” cannot be associated with “Object” 
through any semantic association except for “Abstraction” (see Appendix). This constraint can help us to 
avoid introducing meaningless concepts and associations during constructing method fragments. Suppose 
that we try to add another association, say A, between “Class” and “Object” in the method fragment of 
Object Model shown in Figure 3. If the meaning of A is Abstraction”, i.e. we set a(A) = {Abstraction}, 
we can get a meaningful fragment as a result of the addition. If not, we could get the meaningless one, 
and it should not be allowable. Thus we can have the following rule for keeping semantic consistency 
(soundness). 

Rule 13) There are no “meaningless” associations in product fragments, i.e. every association is 
“meaningful” in the sense that it can semantically consistently connect to specific concepts. 

In this section, we outlined how to represent assembly constraints related to the meaning of method 
fragments. Figure 6 depicts the outline of the syntactical and semantic aspects of our assembly rules. The 
rules can be formally represented with first-order logical formulas as shown in Section 4. In the figure, we 
assemble two meta models MF#l and MF#2 by connecting a new association A. Syntactic rules, e.g. 
rules 1) - 12) can be formalized as logical formulas that have the arguments MF#l, MF#2 and A, i.e. 
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PS(MF#l, MF#2, A) where PS is a predicate symbol. Semantic rules such as Rule 13) can be defined 

with the logical formulas that the semantic concepts and associations, i.e. cc(MF#l), a(MF#2) and a(A) 

appear in. In the semantic rule of the figure, PM is a predicate symbol whose arguments are both the 
syntactic components (MF#l, MF#2 and A) and their semantic ones (a(MF#l), a(MF#2) and a(A)). 
Semantic rules specify the constraints on syntactic and semantic components of method fragments. 

Syntactic Aspect 
Method Fragment Description (Meta Model) 

Syntactic Rule 

I \ 
PS(MF#I, MF#2, A) 

a a a 
Semantic Rule 

, PM(MF#I, MF#2, A, 

a(MF#l), CYMF+Q), OXA)) 

Semantic Aspect 
Ontology (Anchoring System) 

Fig. 6: Syntactic Rules and Semantic Rules for Method Assembly 

4. METHOD ASSEMBLY: GUIDELINE AND FORMALIZATION 

4. I. Requirements for Method Assembly 

Method assembly should ensure that the selected method fragments are mutually adjusted, i.e. they 
have to be combined in such a way that the resulting situational method does not contain any defects or 
inconsistencies. Several types of defects can appear: 

l Internal incompleteness, which is the case if a method fragment requires another method fragment that 
is not present in the situational method. For instance, a data model has been selected without the 
corresponding modelling procedure and tool. 

l Inconsistency, which is the case if the selection of a method fragment contradicts the selection of 
another method fragment. For instance, two similar data modelling techniques have been selected 
without any additional reason. 

l Inapplicability, which is the case if method fragments cannot be applied by project members, due to 
insufficient capability. 

All these issues relate to the internal or situation-independent quality [ 141 of a situational method, i.e. 
the quality of a method without taking into consideration the situation in which the method is applied. 
The two most important criteria are: 

l Completeness: the situational method contains all the method fragments that are referred to by other 
fragments in the situational method. 

l Consistency: all activities, products, tools and people pIus their -mutual- relationships in a situational 
method do not contain any contradiction and are thus mutually consistent. 
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Furthermore, we distinguish the following method internal quality criteria that are not treated in this 
paper for the sake of brevity and their details is in [ 131: 

l Efficiency: the method can be performed at minimal cost and effort 

l Reliability: the method is semantically correct and meaningful 

l Applicability: the developers are able to apply the situational method 

The effort to achieve situation-independent quality of method fragments is considerable. Method 
fragments can be combined in a lot of ways, many of which are meaningless. Moreover, method 
fragments require other method fragments to be meaningful in a situational method, or require certain 
skills from the actors related to them, This is illustrated by the following small example. Suppose a 
process perspective method fragment Draw an Object Model (shown in Section 3.2) has been selected. 
The following should be at least verified ; 

1) No similar method fragment already exists in the situational method, 

2) The specification of the Object Model produced by the process fragment is selected, 

3) Actors have the expertise to deal with this process fragment, and 

4) The products required are produced by preceding selected process fragments (See also the 
examples in Section 3.1 and Section 3.2). 

Internal method quality can only be achieved by a set of guidelines on the Method Engineering level. 
These formalized guidelines are presented in the form of axioms, which can be considered as an extension 
of the set of axioms, corollaries and theorems presented in Section 4. The axioms are grouped by the 
various quality criteria. 

4.2. Classification of Method Assembly 

In this section, the general internal quality requirements completeness and consistency are further 
partitioned by means of the three-dimensional classification framework. 

Completeness is partitioned into: 

. Input/output completeness, stating that if a process fragment requiring or manipulating a product 
fragment is selected, then that product fragment should be available in the situational method. 
Input/output completeness applies to the interaction of the two perspectives. 

. Content completeness, stating that if a method fragment is selected, all of its contents have to be 
available too. Contents completeness applies to the relationship between granularity layers. 

. Process completeness, requiring that all product fragments have to be, in some way, produced. 
Process completeness is related to the interaction of the two perspectives. 

. Association completeness, requiring that product fragments on certain layers are always involved in 
an association, and that associations always involve product fragments. Association completeness 
relates to the product perspective. 

. Support completeness, requiring that technical method fragments support conceptual method 
fragments. Support completeness applies to the relationship between abstraction levels. 

Consistency is partitioned into: 

. Precedence consistency, requiring that product fragments and process fragments are placed in the 
right order in the situational method. This type of consistency applies to the interaction between 
perspectives. 

. Perspective consistency, requiring that the contents of product fragments is consistent with the 
contents of process fragments. Perspective consistency also applies to the interaction between 
perspectives. 
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. Support consistency, requiring that technical method fragments are mutually consistent. Support 
consistency relates to the relationships of technical method fragments. 

. Granularity consistency, which imposes that the granularity layers of related method fragments are 
similar, and that their contents are mutually consistent. This type of consistency applies to the 
interaction between granularity layers. 

. Concurrence consistency, which requires parallel activities to be properly synchronized. 
Concurrence consistency relates to the interaction of process fragments. 

. Soundness (Semantic consistency) is the requirement that the situational method is semantically 
correct and meaningful. 

In the next sub-section, each of these categories will be elaborated by means of an example taken 
from the Objectchart example. 

4.3. Method Assembly Rules 

4.3. I. Some Dgfinitions 

As noticed before, the natural language representation of method assembly rules creates some 
problems regarding ambiguity and implementability. Therefore we have formalized our theory regarding 
method fragments, and expressed the rules in that formalization. In this sub-section, we only show the 
part of the formalization required in the context of this paper. Moreover, we give examples of rules, of 
which some can be formalized well. 
The formalization employs the following notions: 

l Set, which represents a category of similar method fragments. 

l Predicate, which represents a relationship between Method Base concepts. 

l Function, which represents the assignment of the method fragment properties to method fragments 

l The usual logical quantifiers and operators. 
l The operators <, =, E , c, u and n. 

The following sets are defined: 

M = C u T, the set of method fragments 

C = R u P, the set of conceptual method fragments: e.g. Draw an Object Model, Object Model, 
Statechart, Identify Objects and Classes, Class, Object, Service, Transition “has” Event, List of 
States. 

R the set of product fragments, e.g. Class, Object, Event, Object Model, Statechart, List of States 

P the set of process fragments, e.g. Identify Objects and Classes, Identify Associations, Identify 
States, Draw an Object Model. 

C’N c R , the set of concepts, e.g. Class, Object, Service, State, Event. 

A 5 R, the set of associations, e.g. Transition “has” Event, State “is annotated with” Attribute. 

T the set of technical method fragments. 

The following sets and function are defined for an anchoring system that provides semantics of method 
fragments. (see Section 2.3). 

CNo, the set of the semantic concepts. 

A,-,, the set of the semantic associations. 

CI: M -+ p(CNO u Ao), the anchoring function. 
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If a method fragment is selected for inclusion in a situational method, it is indexed with an “P, for 
instance: R, is the set of selected product fragments. 
The following predicates are used in this section: 

contents and contents* G RxR v PxP to represent the non-transitive and transitive .consists-of 
relationship between method fragments, e.g. contents(Class, Object Model); 
manipulation c PxR, to represent the fact that a process fragment manipulates (i.e. produces, updates, 
etc.) a certain product fragment, e.g. manipuZation(Draw an Objectchart, Objectchart); 
involvement c AxR, to represent the fact that an association involves a product fragment , e.g. 

involvement (is annotated with, Objectchart); 
prerequisite G PxR, to represent the fact that a process fragment requires a product fragment for its 
execution, e.g. prerequisite(Identify Associations, List of Classes and Objects); 
precedence c PxP, denote the precedence relationship between process fragments, e.g. 
precedence(Identify Associations, Identify Classes and Objects); 
support c CxT, to represent that a technical method fragment supports a conceptual method fragment, 
e.g. support(Statechart, STATEMATE); 

concurrence, to represent the fact that two process fragments can be performed in parallel, e.g. 
concurrence(Identify Associations(02), Identify States(S1)) (see Figure 5). 
layer: M + {Method, Stage, Model, Diagram, Concept}, to return the layer of the method fragment 
(see Section 2.2), e.g. Zayer(Objectchart)=Diagram, Zayer(Class)=Concept.. 

Below, each type of completeness and consistency, as defined in Section 4.1, is related to our 
Objectchart example. We assume that both Object Model, Statechart, and Objectchart should be part of a 
complete and consistent situational method, M,s, 

4.3.2. Completeness Rules 

Input/Output Completeness Step 2 of the Objectchart modeling procedure requires an Object Model. The 
description of the Object Model should therefore exist in the situational method. In general, the rule is: 
Required product fragments should have been selected for the method assembly , i.e. 

Vp E P, , r E R [prerequisite(p, r) + r E Rs ] 

Contents Completeness Concepts (product fragments) such as Class, Object, State, Service, Transition 
etc. should always be part of another product fragment. Note that this is indeed the case, as they are all 
components of Statechart. In a formalized way, this rule is defined as follows: 

VrI E Rs3r2 E R,[Zayer(rI) = concept 

+ contents * (r2 ,rl ) A Zayer(r, ) E {Model, Diagram)] 

Process Completeness Suppose the Objectchart is included in the situational method. Then it has to be 
produced by some process fragment that is also included. In general, selected product fragments at the 
lowest four granularity layers have to be produced by a selected process fragment, i.e. 

Vr E R,3p E P,[Zayer(r) # Concept + manipulation(p,r)] 

Association Completeness Suppose both the Object Model and Statechart have been selected for 
inclusion in the situational method. Then they should be connected by at least one association (note, 
again, that this is the case; they are connected by even more than one association). In general, if more 
than one diagram layer product fragment has been selected, diagram layer product fragments should be 
associated with at least one other diagram layer product fragment (Rule 4)). 
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Vrl , r2 E R,3a E A, [layer(rl ) = Diagram A /UJXY(Y~ ) = Diagram A ~1 f r2 

+ involvement(a, rl ) A involvement(a, r2 )] 

Also Rule 3) is an example of an association completeness rule: 

v’r, ,r2 E R,Ia, ,a2 E As3 E CNs[(Zayer(rl) = Diagram A layer(r2) = Diagram 

A r, f r2 ) + involvement( aI , r, ) A involvement(a2 , r2 ) 

A involvement(c, r, ) A involvement(c,r2 )] 

From these rules we can deduce, that Rule 2) is redundant. 

Support Completeness Suppose the STATEMATE editor was selected for inclusion in our situational 
method. Then, the Statechart product fragment that is supported by this editor should also be included. In 
a formalized way, this rule, i.e. Rule 11) is defined as follows: 

Vt E TT:,,r E R[support(r,t) + r E R] 

4.3.3. Consistency Rule 

Precedence Consistency In the modeling procedure for Objectchart, step 0C2 requires an Object Model. 
This Object Model should be produced by a step before step 0C2. In general: a process fragment 
producing a required product fragment should be placed before the process fragment requiring the 
product fragment, i.e. 

vp, E Ps ,r E Rs3p2 E Ps [prerequisite(p, ,r) 

-+ manipulation(p2 , r) A precedence( p, , p2 )] 

This rule is a part of Rule 7). This rule means that we should have at least one new process fragment 
and this new fragment should not be first in the order of the assembled process fragments. 

In the example of Figure 4, we have a new process fragment “Refine Statechart (OC3)“, and it cannot 
be performed before Draw an Objectchart and Draw a Statechart. The above rule specifies the latter part. 
We can also formalize the former part. 

Perspective Consistency Objectchart is produced by the modeling procedure presented in Section 3.2. 
The components of Objectchart, its concepts, should be produced by components of this fragment. As a 
general rule: If a product fragment is produced by a certain process fragment, then all of its contents 
should be produced by the sub-processes of that process fragment, i.e.: 

Vp, , p2 E Ps , r E R, , b E B3r2 E R, [manipulation( p, , r, ) A contents(p, , p2 ) 

-3 contents(r, , r2 ) A manipulation(p2 , r2 )] 

Granularity Consistency An example of a granularity consistency rule is Rule 12) (Section 3.4), stating 
that if two product fragments are associated, there should be at least an association at the Concept layer in 
their perspective contents as well, i.e.: 

Va1 E As,rl,r2 E Rs,11,12 E L3cl,c2 E CNs,a2 E A, 

[involvemenf(a, , rI ) A involvement(al , r2 ) + 

contents * (rl , c1 ) A contents * (r2, c2 ) A involvement(a2, c1 ) A involvemnet(a2, c2 )] 

Concurrence Consistency Suppose the Objectchart process fragment consists, to speed up the process, of 
two steps that are concurrently executed. This may only be the case, if they do not require complete 
products from each other. So, for instance, steps OCl and OC2 of the Draw an Objectchart fragment may 



224 SJAAKBRINKKEMPER etal. 

not be concurrently executed, as step 0C2 required some intermediate results produced by step OCl. 
However, within this fragment some steps can be performed concurrently, e.g. 02 and Sl. The 
concurrence consistency rule is defined as follows: 

Vpl, p2 E Ps , r E Rs tconcurrence(pl , p2 1 
+ +prerequisite(pl, r) h manipulation(p2, r)) A 

7( prerequisite( p2, r) h manipulation( pl, r))] 

Soundness (Semantic Consistency) In Rule 13), we stated that newly introduced associations should be 
meaningful. This can be translated into the rule, that for each association at the Concept layer of the 
situational method, there should be a corresponding association in the ontology between the respective 
semantic concepts involved: 

ValEA, cl,c2~CN 3d,,d+CNo, a2EAo~[involvement(al,cl) A 
involvement(al,cJ + d,!IENc,) A dyzad(c,) A involvement(a2,dl) A 

involvement(az, dz)] 

For example, we associated “Attribute” of Object Model with “State” of Statechart in the method 
assembly process, and introduced a new association “is annotated with”, whose meaning is “Description”. 
Since the anchor system, which provides the formal semantics, has an association between the semantic 

concepts “Data Set” (see Section 3.4, a(Attribute) = {Data Set, Property}) and “State” 

(a(State)={ State}), it is easily deducible the above formula holds on the association “is annotated with”. 

See Appendix A and check @(State, Description) = Data Set. 
Remember that the aim of this paper is not to provide a complete anchoring system but to propose our 

assembly techniques based on patterns of rules. The above example can show that semantic information, 
which is provided by the existing anchoring system, can be directly and easily embedded to our rules. 

5. RELATED WORK 

As mentioned before, several meta-modelling techniques were proposed, e.g. they were based on 
Entity Relationship Model, Attribute Grammar, Predicate Logic and Quark Model. Comparison of meta- 
modelling techniques and their languages was also discussed in [ 121. We choose the techniques that have 
the capability of method assembly and discuss the differences with our work. 

Almost all approaches to meta-modelling are using Entity Relationship Model (ER). Some applied 
Predicate Logic to describing the properties, which cannot be represented with just the ER notation. For 
instance, the Viewpoints approach [18] combines ER and Predicate Logic. It aims at constructing a 
method with multiple views from the existing methods. In other words, we can define the assembly 
mechanism of the products, which are produced by the different existing methods. The approach also 
provides the function for defining constraints to maintain consistency on the products that are produced 
by the existing methods. However, the Viewpoint approach did not provide the capability of specifying 
constraints on method assembly, but focused on defining the constraints on product assembly. 

UML (Unified Modeling Language) [28] has a function to define how combine nine UML diagrams 
using its meta model. However it does not suggest which combinations can produce meaningful usage of 
the diagrams, because it has no rules or guidelines of the meaningful combinations. Suppose that we 
generate the method where a developer is forced to complete a UML state diagram before starting writing 
a UML use-case diagram. The method does not seem to be so useful, because a use-case diagram is for 
extracting system behavior so as to write a state diagram. The meta model of UML cannot provide the 
guidelines that prevent us from generating this kind of meaningless method. Our precedence consistency 
rules in Section 4.3.3 do not allow us to perform this assembly of a use-case diagram and a state diagram. 

Software Quark Model [l] tried to formalize a restricted set of atomic concepts, which can specify any 
kind of software products and it can be considered as a product perspective of meta-modelling. The aim 
of the model seems to be not method assembly in product level, but maintaining causality relationships 
among the software products produced in various stages of a software development cycle through atomic 
concepts. 
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In his article, Song investigated the existing integrated methods, into which several different methods 
were integrated, and classified method integration from benefit-oriented view, i.e. classification criteria 
are based on what benefit we can get by the integration [25]. He did not use the term assembly but 
integration. According to his classification, we can have two categories: function-driven (a new function 
is added) and quality-driven (the quality of a method is improved). He also classified these two categories 
in detail based on which components of methods are integrated, e.g. Artifact Model Integration, Process 
Integration, Representation Integration and so on. His work is a pioneer of method assembly research. 
However, he did not discuss how to integrate (assemble) methods or what rules should hold for each 
category but just classified the existing integration patterns. And, all of his proposed classes are not 
necessary orthogonal, i.e. an integration is included in several classes. Furthermore our classification 
includes Song’s classification. Figure 3 is an example of Song’s Artifact Model Integration, i.e. method 
assembly in Conceptual Level, Product Perspective and Diagram Layer. 

And none of the meta-modelling and assembly (integration) techniques mentioned above considered 
the semantic aspects of method fragments. 

General work regarding anchoring systems or ontology can be found in [7] and some of the best 
known academic approaches in method engineering field, especially for product fragments are in [2, 19, 
27, 291. The CRIS framework [ 191 consists of method components and their relationships used in various 
stages of IS development. Sowa and Zachman [27] developed the Information Systems Architecture 
(ISA) framework consisting of roles (for instance planner or builder) and perspectives (for instance the 
process perspective, the network perspective). European ModelZing Language (EML) [2] consists of a 
Concepts Model, which contains elementary IS engineering concepts, their attributes, and their 
relationships, and is intended to provide a default standard method specification language for co-operative 
IS projects within the European market. The differences among these work are on which basic semantic 
concepts, i.e. common terminology were selected and adopted. No anchoring system mentioned above 
has been found identifying the basic processes in IS engineering. Moreover, they seem to have been 
defined very pragmatically. We considered that the above problems have been improved in MDM [ 131. 
For example, MDM includes basic semantic concepts for process fragments in addition to product 
fragments, and the concepts have been extracted from a wider spectrum of IS. Although in our method 
assembly rules we adopted the MDM for the above reasons, the rules are essentially independent on 
which anchoring system we select. 

6. CONCLUSION AND FUTURE WORK 

This paper clarifies how to assemble method fragments into a situational method and formalize rules 
to construct meaningful methods. We have already extracted over 80 rules thought real method assembly 
processes. Our rules are general ones which are applicable for arbitrary method assembly, and we may 
need some rules for specific kinds of method assembly. These rules probably include semantic 
information on method fragments and on systems to be developed. Our next goal is to assess our generic 
rules in more complicated and larger-scale assembly processes, e.g. whether our rules are sufficient and 
minimal to specify method assembly processes as general rules, and to look for specific rules as method 
assembly knowledge. 

Our rules are described with predicate logic, so we have a possibility to check method fragments 
automatically during the assembly processes. To get efficient support, we should consider how our rules 
can be efficiently executed in our method base system, which stores various kinds of method fragments. 
As reported elsewhere, we are currently developing the Computer Aided Method Engineering (CAME) 
tool, called Decamerone [ 111, which includes a comprehensive method base system. A support function 
for method assembly processes based on our assembly rules is currently under development. 
Functionality for adaptive repository generation and customisable process managers is being realised. 
Next to this, the Method Engineering Language (MEL) is under development [ 121. This language allows 
us to describe method fragments from the various relevant dimensions. Operators for the manipulation, 
storage and retrieval of method fragments in the method base have been defined. To clarify which method 
fragments are suitable and useful for a specific situation is one of the most important research issues and 
empirical studies are necessary such as [16], [23] and [24], in addition to the issue on complete formal 
semantics of methods and method fragments. In particular, according to [23] that discusses human 
cognitive limitation, human developers tend to pay more attention to syntactical aspects of products rather 
than semantic ones in information systems modeling processes. This leads to the significance of the 
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methods that match the semantics of the problem domains of modeling, in order to prevent developers 
from neglecting the semantic aspects of products in modeling processes. 
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APPENDIX A: DEFINITIONS OF THE METHODOLOGY DATA MODEL 

This appendix is a part of the definition of the anchoring system Methodology Data Model (MDM) 
[13] so that the readers can understand this paper. See [13] if the complete definition is necessary for 
further understanding the MDM. 

Definition 1 The MDM consists of concepts, associations, and relationships between concepts and 
associations. The following definition therefore addresses a set of concepts, a set of associations, and a 
function relating elements of the two sets. The Methodology Data Model is defined as a structure 

&n~ = (CNo, Ao, Q), with 

l CNo, the set of MDM concepts, 

l Ao, the set of MDM associations, and 
l @: CM0 x A0 + CNO, a function mapping MDM concepts and MDM associations on MDM 

concepts. 

Definition 2 CNo = {Activity, Actor, Association, Condition, Data Set, Event, Function, Object, Object 
Class. Property, State, Transition, . . . }, where 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Activity is a step to perform a function in an information system. 

Actor is a person or machine performing an activity. 

Association is a relation between object classes in specific roles. 

Condition is the dependency upon which, a transition can fire or a decision can be taken. 

Data Set is a stable, aggregated collection of data described by objects or object classes and 
used by a dataflow. 

Event is a significant occurrence inside or outside the system, influencing the behaviour of 
activities. 

Function is a specific occupation within a system. 

Object is a material or abstract thing within a system with one or more properties, which can 
have a state and a behaviour represented by an activity. 

Object Class is an abstracted category of objects. 

Property is a quality of an object class. 

State is the mode of being or condition of an activity or an object class. 

Transition is a trigger, caused by the end of the execution of an activity, an event, or the 
fulfilment of a condition, resulting in a state change or the start of the execution of an activity. 

. . . 

Definition 3 A0 = {Abstraction, Aggregation, Capability, Change, Choice, Contents, Description, 
Destination, Effect, Involvement, Manipulation, Source, TransitionTrigger, Trigger, . . ), where 

l Abstraction is the categorisation of objects into an object class. 

l Capability is the ability of an actor to perform an activity or afunction. 

l Change is the effect of a transition. 

l Choice is the solution for a problem. 
l Contents is the description of a data set by object classes. 

l Description is the characterisation of a concept instance by another concept instance. 
l Destination is the destination of a movement or flow. 
l Effect is the influence of one concept instance on another. 
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l Involvement is the inclusion of a concept instance in an association. 
l Manipulation is the way in which an activity describes the behaviour of an object. 
0 Source is the source of a movement or flow. 

l TransitionTrigger is the execution of a transition by an event. 
l Trigger is the initiation of an activity by an event. 
. . . . 

Definition 4 a,: CNO x A0 + CNo, the partial function mapping MDM concepts and MDM associations 
on MDM concepts, is defined as follows: 

@(Activity, Capability) = Actor, @(Activity, Effect) = Transition, 

@(Activity, Manipulation) = Object, @(Activity, Trigger) = Transition, 

@(Actor, Capability) = Function, @(Attribute, Description) = Object Class, 

@(Event, TransitionTrigger) = Transition, @(Event, Trigger) = Activity, 

@(Object Class, Abstraction) = Object, @(Object Class, Aggregation) = Data Set, 

@(Object Class, Involvement) = Association, @(Object, Aggregation) = Data Set, 

@(State, Description) = Data Set, @(State, Description) = Activity, 

@(Transition, Change) = State, @(Transition, Description) = Activity, 

@ describes a semantic network of MDM concepts and associations. Due to the complexity of this 

network, we have chosen not to use a graphical notation, which would result in an incomprehensible 
figure. 


