Ontology as a Requirements Engineering Product

Karin Koogan Breitman,

Julio Cesar Sampaio do Prado Leite’

Pontificia Universidade Catoélica do Rio de Janeiro

karin@inf.puc-rio.br

Abstract

The "Semantic Web" community poses a new non-
Sfunctional requirement for web applications. In order to
secure interoperability and allow autonomous agent
interaction, software for the web will be required to
provide machine processable ontologies. We understand
that the responsibility, not only for making explicit this
requirement, but also to implement the ontology, belongs
to requirements engineers. As such, we see the ontology
of a web application as a sub-product of the requirements
engineering activity. In this tutorial we survey the basic
principles behind ontologies as they are being
implemented and used by the Semantic Web Community
today. Those include ontology languages, tools and
construction methods. We focus on a process for ontology
construction centered on the concept of application
languages. This concept is rooted on a representation
scheme called the language extended lexicon (LEL). We
demonstrate our approach with examples in which we
implement machine processable ontologies in the
DAMLAOIL language. We finalize with a discussion of
today’s research issues in ontology engineering,
including ontology evolution, , integration and validation.

1. Introduction

The development of the World Wide Web made the
Internet accessible to millions by making it easy for
anyone to publish and access documents on the Internet.
However, the explosive growth of the number of
documents published has led to the problem of
information overload [Fensel03]. Researchers from
industry and academia are now exploring the possibility of
creating a "Semantic Web," in which meaning is made
explicit, allowing machines to process and integrate Web
resources intelligently. Beyond enabling quick and
accurate web search, the use of ontologies may also allow
the development of intelligent internet agents and
facilitate communication between a multitude of

www.inf.puc-rio.br/~julio

heterogeneous web-accessible devices. Unfortunately the
majority of the information available is a format
understandable to humans alone, making the automation
of search and retrieval processes very hard [Berners-
Lee02]. Ontologies will provide the necessary meaning to
web content therefore enabling software agents to
understand and retrieve information in relevant contexts.

2. Ontology Definition

The word ontology comes from the Greek ontos (being)
+ logos (word). It has been introduced in philosophy in
the 19" century, by German philosophers, to distinguish
the study of being as such from the study of various kinds
of beings in the natural sciences. As a philosophical
discipline, ontology building is concerned with providing
category systems that account for a certain vision of the
world [Guarino98].

In computer science, ontologies were developed in
Artificial Intelligence to facilitate knowledge sharing and
reuse [FenselO1]. Today they are becoming widespread in
areas such as intelligent information integration,
cooperative information systems, agent based software
engineering and electronic commerce. One of the most
cited ontology definition is provided by Gruber
[Gruber93]: “An ontology is a formal, explicit
specification of a shared conceptualization.” Where
conceptualisation stands for an abstract model, explicit
means that the elements are clearly defined and, lastly,
formal means that the ontology should be machine
processable [Fensel01]. There is, however, no universal
definition for ontologies [Gruninger02]. One of the
reasons is the great spectrum of possible uses for them.
Gruninger relates, among others, the possibility of using
ontologies for the communication between humans and
implemented computational systems, for computational
inference and for the reuse and organization of knowledge
[Gruninger02]. The formality degree of an ontology is
also an issue [Fensel03].

For the purposes of the tutorial, we adopt the ontology
structure O proposed by Maedche [Maedche02].

" On leave at the University of Toronto, Department of Computer Science
** This research was supported in part by CNPq under contract ESSMA- 552068/2002-0, and by CAPES.

Proceedings of the 11th IEEE International Requirements Engineering Conference

1090-705X/03 $17.00 © 2003 IEEE

YF]',F.

COMPUTER

SOCIETY

According to the author, an ontology can be described by
a S-tuple consisting of the core elements of an ontology,
i.e., concepts, relations, hierarchy, a function that relates
concepts non-taxonomically and a set of axioms. The
elements are defined as follows:

0:= {C R, H, rel, A°} consisting of :

Two disjoint sets, C (concepts) and R (relations)

A concept hierarchy, #C: #C is a directed relation #¢ < C
x C which is called concept hierarchy or taxonomy. #HC
(C1,¢2) means (; is a subconcept of (.

A function ref : ® — (C x (that relates the concepts non
taxonomically

A set of ontology axioms °, expressed in appropriate
logical language.

Figure 1 exemplifies our use of the ontology structure.
We borrow from the Meeting Scheduler ontology. We
choose three concepts, meeting details (x), meeting
date(y) and agenda(z), one relation, is_registered (w) that
holds between concepts meeting date and agenda.
Concept meeting date holds a subsumption relationship to
the meeting details concept. According to the structure we
have something like, C: = {x, y, z} and ® : = {w}. The
following hierarchical relation, #4(y,x) and the non
taxonomic relation, w(y,z).

agenda
is_registered

meeting
details

meeting
date

Figure 1 — Example of ontological elements and their
relations using the ontology structure O proposed by
[Maedche02].

The reason behind our choice is that the representation
proposed by Maedche can be mapped to most existing
ontology representation languages. In the next section we
survey some of the ontology languages.

3. Ontology Languages

Tim Berners Lee proposed a layered language model
for the WWW at the XML 2000 conference, depicted by
Figure 2. At the bottom layer there is HTML and XML,
that enabled the enormous growth of the web. Because of
its simplicity, HTML hampered the development of more
sophisticated applications [Fensel03]. As a result another
language was defined, XML. On the second layer there is

the Resource Framework Description (RDF) that provides
a formal data model and syntax to encode machine
processable metadata. The idea behind RDF is to provide
interoperability between applications that exchange
machine understandable information on the
web[HjelmO1]. It provides a set of primitives for modeling
simple ontologies in RDF schema, including subsumption
of relationships for classes and properties. RDF however,
was criticized as an ontology language because it lacked
expressiveness [HeflinO1]. In the RDF Schema logical
connectives such as negation, disjunction and conjunction
are not provided, thus restricting the expressive power of
the ontology.

DAMLAOIL
DAML-ONT | | OIL
RDFS
XHTM | RDF
| HTML XML

Figure 2 — Layer Language Model for the WWW
[Fensel03]

The ontology inference layer (OIL) was sponsored by
the European Community via the on-to-knowledge
project. OIL sprung from the need of an expressive
language for creating ontologies on the web, since RDF
provides inadequate expressiveness and lacks formal
semantics and reasoning support. OIL’s formal semantics
and efficient reasoning support is provided by Description
Logics. The semantics of OIL rely on a translation into the
description logic SHIQ extended with concrete data types,
SHIQ) . A complete mapping of Oil to SHIQH) is
available in [Horrocks99]. The OIL community made
available tools that support editing and ontology
reasoning.

The Defense Advanced Research Projects Agency
(DARPA) in conjunction with the W3C is developing the
DARPA Agent Markup Language (DAML) by extending
RDF with more expressive constructs aimed at facilitating
agent interaction on the web [Hendler01]. DAML released
its first ontology language specification, DAML-ONT in
October 2000. In December of the same year DAML~+OIL
was released to replace DAML-ONT. The formal
semantics of DAML+OIL is provided as a mapping to
first order predicate logic, written in ANSI Knowledge
Interchange Format (KIF) [Genesereth91]. DARPA

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

maintains an ontology library with near two hundred
entries made publicly available at
http://www.daml.org/ontologies/. The large adoption and
installed base of DAML ontologies is making it a favorite
language to provide semantic interoperability on the web
[BuranarachO1].

A new ontology language is being recommended by the
W3C consortium. OWL (web ontology language) is a
“revision of the DAML+OIL ontology language
incorporating lessons learned from the design and
application of DAML+OIL” [McGuiness03]. The
documentation for OWL is still in the working draft stage,
the last artifacts were released March 2003. As of today,
there is no tool to support ontology development using
OWL.

Other ontology languages were proposed outside the
framework illustrated in Figure 2. The Simple HTML
Ontology Extension (SHOE) developed at the University
of Maryland, prior to XML and RDF [Luke96]. SHOE is
an ontology-based knowledge representation language that
is embedded in web pages. The underlying philosophy of
SHOE is that intelligent internet agents will be able to
better perform their tasks if the most useful information is
provided in a structured way. SHOE extends HTML with
a set of knowledge oriented tags and associates meaning
to the contents of a page by making each web page
commit to one or more ontologies. The ontologies permit
the discovery of implicit knowledge through the use of
taxonomies and inference rules. Compared to RDF, SHOE
is analogous an RDF Schema but with less expressive
power [BuranarachO1], e.g., SHOE does not allow
negation in the claim statement nor the subclass
relationship for properties. Maintenance of ontologies is
also an issue in SHOE, for they are embedded in the web
pages as opposed to as separate objects.

The ontology interchange language, Ontolingua
[Farquhar97] was designed to support the design and
specification of ontologies using a semantics based on
KIF [Genesereth97]. The set of KIF expressions that
Ontolingua allows is defined in an onology, called the
Frame Ontology. The Frame Ontology specifies, in a
declarative form, the representational primitives that often
supported with special-purpose syntax and code in object
centered representation systems.

An Ontolingua ontology is composed of classes,
relations, functions, objects distinguished and axioms. The
expressive power provided by Ontolingua is unmatched
by the previous languages surveyed. Unfortunately no
reasoning support is provided until this date.

The development of ontologies, using any of the
languages reviewed in this section, would be impossible
without tools to filter the markup and present the
information in a human understandable way. In the next

section we survey some of the tools available for this
purpose.
4. Ontology Tools

A few tools to support ontology construction and
editing are currently available. Protégé-2000 is a
graphical tool for ontology editing and knowledge
acquisition [NoyO1]. It was developed using open source
architecture and allows for the customization of the tools
used to create knowledge base. Protégé-2000 does not
favor any specific ontology language. The creators of the
tool hold that there is little point in designing a tool that
serves one language specifically. In contrast they suggest
using the customization facilities provided by the open
source architecture of Protégé-2000 to adapt and
experiment with different ontology languages by the use
of special plug ins. Ontologies are built in Protégé-2000
by creating classes, instances of those classes, slots
representing attributes of the classes and instances and
facets. A plug in for the OIL language exists and a DAML
one is currently being developed.

OilEd is an ontology editor that allows its users to build
ontologies using DAML+OIL [Horrocks99,
Bechhofer01]. The initial intention behind OilEd was to
provide a simple editor that demonstrated the use of, and
stimulated interest in, the Oil language. OilEd is an
ontology editor and not an environment, i.e., it does not
provide support to ontology integration (alignment) or
versioning OilEd has proved very popular, with over 2000
downloads from the original site in the last 12 months
[OilEd site]. It has been used within a number of
companies and institutions for both teaching and research
purposes.OilEd is now available as an open-source project
under the GPL licence at [OilEd site]. Reasoning support
for OilEd is available and provided by the FaCT (fast
classification of terminologies) inference engine, publicly
available at http://www.cs.man.ac.uk/~horrocks/FaCT/.

The reasoning services provided include inconsistency
detection and determining subsumption relationships. OIL
provides an extension to RDF and RDFS. Based on its
RDF syntax, ontologies written in OIL are valid RDF
documents.

OntoEdit is an ontology environment that supports the
W3 standards by exporting ontologies to the RDFS, XML
and DAMLAOIL formats [Erdmann02]. Similarly to
software development environments, OntoEdit provides a
method to support ontology development. It is comprised
of three stages: requirements, refinement and evaluation.
Integrated tools provide automated support to each stage.
OntoEdit is a commercial tool.

Chimaera is an ontology environment that supports the
creation and maintenance of distributed ontologies.
Although Chimaera can be used to edit ontologies, its
focus is in merging multiple ontologies together and
diagnosing individual or multiple ontologies. It supports

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

users in tasks such as loading knowledge bases in
differing formats, reorganizing taxonomies, resolving
name conflicts and browsing ontologies [McGuiness02].

5. Ontology Development Methods

The importance of ontologies as a model for capturing
and reusing knowledge is well understood among the
research community. Ontology development, however,
seems to be an art rather than a science [Uschold96]. So
far, a number of research groups have been trying to
tackle this problem by providing methodologies for
ontology development. Ushold and King proposed a
methodology based on the experience gained from
constructing the Enterprise ontology [Ushold96,
Ushold98]. The authors refrain from providing guidelines
on elicitation and the identification of information sources
for building the ontology.

Gruninger and Fox propose the Toronto Virtual
Enterprise (TOVE) methodology [Gruninger95]. This
methodology was derived from the authors experience in
the development of ontologies in the business process and
enterprise domains. The authors use what they call
motivational scenarios to describe problems or examples
that are not adequately covered by existing ontologies
Following the scenarios, one must elaborate the
competency questions for the ontology, which helps its
evaluation (analysis) In our opinion the major
shortcoming of this approach is to suppose that the
ontology concepts and relationships could be easily
derived from the motivation scenarios. In fact, scenarios
are best employed to model dynamic aspects rather then
static ones, e.g., concepts and relationships as intended by
the authors.

Noy and McGuiness provide what they call a simple
knowledge engineering methodology [NoyOla]. Built on
their own experiences with the ontology-editing
environments Protégé-2000 [NoyOlb], Ontololingua
[Farquhar97] and Chimaera [Chimera00], reviewed in
section 4, the authors provide a guide to help new
ontology designers develop their ontologies. The authors
provide no guidance to concept elicitation but put forward
a lengthy discussion on design decisions, e.g., when to
introduce a new class as opposed to represent it by means
of restrictions and provide useful comments on
terminology choices. Again, compared to this line of
work we see our process as strong based on a disciplined
elicitation strategy.

Methontology is a framework developed in the
artificial intelligence laboratory of the University of
Madrid that, among other functionality, provides support
to ontology construction [Fernandez-Lopez97, Goémez-
Pérez98]. Associated to the Methontology framework is
the Ontology Development Environment (ODE) that

provides automated support to the development activities.
The authors make use of elicitation techniques very
similar to the ones we use, e.g., structured interviews,
document reading and questionnaires. The modeling of
the concepts, however, seems to very heavy weight. The
LEL on the other hand, uses a very simple structure, based
on the denotation and connotation of terms. We have
observed that the simplicity and organization provided by
the lexicon is a key factor in validating it with users
[Hadad00].

5.1. Lexicon Based Ontology Construction
Available methods for ontology construction, such as
the ones presented in the previous section, , concentrate in
the modeling aspects and are either vague or lacking on
how concepts and relationships are to be elicited from the
macrosystem. The result is the ad hoc use of elicitation
techniques, whose choice depends solely on the
developer’s personal experience and skills. As such, we
are proposing a process for the construction of ontologies,
which is centered on a established elicitation strategy
based on the concept of application languages. This
concept is rooted on a representation scheme called the
language extended lexicon (LEL).
This technique has long been incorporated to our
requirements elicitation practice and it focuses on using
the language of the problem to describe the problem
[Leite90]. The lexicon will provide a systematization for
the elicitation, model and analysis of ontology concepts.
The underlying philosophy of the lexicon falls in the
contextualism category, according to which particularities
of a context of use of a system must be understood in
detail before requirements can be derived [Potts97]. This
approach is new to ontology building, that traditionally
associates generalization and abstraction approaches to
the organization of information.

5.1.1 Extended Lexicon of the Language

The Language Extended Lexicon (LEL) is a
representation of the symbols in the application language
[Leite90, Leite93].1t is anchored on a very simple idea:
understand the language of the problem without worrying
about understanding the problem. Each term in the lexicon
has two types of description. The first type, notion, is the
denotation of the term or phrase. The second type, called
behavioral response, describes the connotation of the term
or phrase, that is, provides extra information about the
context at hand. In addition, the lexicon terms are
classified in four categories: object, subject, verb and
state. Figure 6-a shows an example of a lexicon term of
type subject.

Central to the LEL are two principles. The first is to
maximize the use of other lexicon terms when describing

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

the notions and behavioral responses of a new term. This
is the principle of closure. The second is to minimize the
use of terms, external to the Universe of Discourse. If
unavoidable, make sure they belong to the basic
vocabulary of the natural language in use, and, as much as
possible, have a clear mathematical representation (eg.
set, function). This is called the principle of minimal
vocabulary.

The elicitation of LEL terms is usually performed by a
combination of elicitation techniques. The enumeration of

validation heuristics

UofD

interviews. In unstructured interviews the general
heuristic is to pay attention to terms used frequently and
which seems unfamiliar or is used in an unfamiliar way.
Once the initial terms are enumerated, either structured
interviews or detail reading of documents can be
employed to assign notions and behavioral responses to
the listed terms. Since the lexicon is a self contained
network, by the closure principle, it is natural that during
the elicitation of notions and impacts for one term others
terms by also be dealt with.

classification and
indentification heuristics

LEL

UofD

IDENTIFY
INFORMATION
SOURCES

elicitation

term

VALIDATE
LEL

validation

\

problems

techniques selection

information [orqerf
source list |oriteri:

heuristics

list of
terms

general
classification

\ UofD
\9

IDENTIFY LIST
OF TERMS

classificati
criteria

list of

CLASSIFY
TERMS

classified
terms

information source list

-

UofD

verification
heuristics

checklist

LEL

VERIFY
LEL

representation
heuristics

types

model

verification)
problem

DESCRIBE LEL

TERMS

.

information source list

Figure 3 — Lexicon Construction Process [Kaplan00]

languages terms can be done by reading documents of the
Universe of Discourse (UofD) and applying frequency
heuristics to find proper candidates, by observing the
UofD and electing the important terms, or by unstructured
Secondly we must identify a list of terms relevant to the
UofD using a set of elicitation techniques. The main
heuristic used at this stage is: list each terms that seems

to have a special meaning. The next step is to classify the

terms. They can be one of object, subject, verb or state.

The terms are described next. In this step the objective is

to elicit the meaning of each term. Each lexicon term is a

set of notions (denotation) and behavioral responses

(connotation) for that term. When describing the terms in

the lexicon one should enforce the principles of closure

and minimal vocabulary. The lexicon is verified using an

inspection strategy [Kaplan00]. Validation is performed

by actors of the UofD using reading techniques.

The process to build the LEL is comprised of six steps,
as depicted in Figure 3. First we have to identify the main
information sources of the Universe of Discourse (UofD).
The most reliable sources are people and documents
[Leite93].

C rel
R HCT

70 Ontology

structure O

@, Ontology
construction process

LEL

Lv Lo Lsj Lst

Figure 4 — Ontology Construction Process P,, (inspired in
the layered ontology engineering approach proposed by
[Maedche02])

Proceedings of the 11th IEEE International Requirements Engineering Conference

1090-705X/03 $17.00 © 2003 IEEE

YF]',F.

COMPUTER
SOCIETY

5.1.2 The ontology construction process

Based on the Language Extended Lexicon, presented
on the previous section, we propose an ontology building
process. The process is independent of the ontology
language used in the implementation. The resulting

lexicon in the ontology structure. On the bottom layer we
have the LEL, composed of terms classified into verb (£v),
objects (£°), subject(£¥) and state (£); on the top layer we
have the ontology structure O. Process @, maps the lexicon
terms into ontology elements. We depict process @, in

ontology will be expressed using the core ontology
elements defined in section 2, a 5-tuple consisting of
concepts, relations, a concept hierarchy, functions that
relates the concepts non taxonomically and axioms{ C, ®,
I, rel; A° [Maedche(2]. Figure 4 shows the role of the

Figure 5.
We detail process P, as follows:

1.List lexicon terms alphabetically according to their type (verb, object, subject and state)
2.Make 3 lists: concept ((), relations (®) and axioms (2°). In the concept list, each entry will have a name, a description and list
of zero, one or more re/ (function that relates the present concept to others, non taxonomically). The entries in the relation and
axiom lists will have labels only.
3. Using the list of lexicon terms classified as either object or subject, for each term:
3.1 Add a new concept to the concept list. The concept name is the lexicon term itself. The concept description is the
notion of the term.
3.1.1 For each behavioral response,
3.1.1.1 Check the relation list for a relation that expresses it.
3.1.1.2 If there is none, add new a relation to the relation list. The relation name is based on the
verb of this behavioral response.
3.1.1.2.1 Verify consistency
3.1.1.3 In the concept list, add a new re/to the concept in question. The re/is formed by the concept in
question + relation (defined in 3.1.1.1) + concept it relates to (The concept is the
direct/indirect object of the verb in the behavioral response. It is usually a term in the
lexicon and appears underlined).
3.1.1.4 Check for negation indicators in the minimal vocabulary that relate the term to other terms.
Analyze the pair of terms in order to identify a possible disjoint relationship.
3.1.1.4.1 If true, add the disjoint relationship to the axiom list.
3.2 Verify consistency
4. Using the list of lexicon terms classified as type verb, for each term:
4.1.1 Check the relation list for a relation that expresses it.
4.1.1.1 If there is none, add new a relation to the relation list. The relation name is the lexicon term
itself.
4.1.1.1.1 Verify consistency
5. Using the list of lexicon terms classified as type state, for each term:
5.1.1 For each behavioral response
5.1.1.1 Try to identify the importance of the term to the ontology. This strategy is equivalent to the
use of competency questions proposed in [Gruninger9S]. The questions could be obtained
from rephrasing the behavioral responses of the term in question into questions of type,
when, what, who, where, why and how.
5.1.1.2 Check for negation indicators in the minimal vocabulary that relate the term to other terms.
Analyze the pair of terms in order to identify a possible disjoint relationship.
5.1.1.2.1 If true, add the disjoint relationship to the axiom list.
5.1.2 If the term seems to be central to the ontology, classify it as a concept ().
5.1.3 If the term is not central to the ontology, classify it as a relation (R®).
5.1.4 Verify consistency
6. When all terms are added to the ontology,
6.1 Check ontology looking for sets of concepts that share identical re/
6.1.1 For each set of concepts that share identical e[build a separate concept list.
6.1.2 Search the ontology for a concept that refers to all members of this list.
6.1.2.1 If such concept is not found, search the notion and behavioral response of each member of the
concept list trying to identify a common term from the minimal vocabulary.
6.1.3 Build a concept hierarchy where every member of the concept list is a sub-concept of the one found in
6.12
6.1.4 Verify consistency

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

Note that every time a new element is added to the
ontology, a consistency verification is needed. Ideally, the
verification task is done with the aid of automated tools.
In the next section we present an example of the ontology
construction process proposed, using the OilEd and FaCT
tools, that provide automated support to edition and
consistency checking respectively.

We understand, however, that it is a fallacy to believe that
in some point in the future we will be able to build
ontologies based solely in reuse. A certain degree of
contextualized (wet) information is always to be expected.

checl_< new relation ®
relation ®, R
list >V
verb C
"
object \I/ [I E
list ».| new concept N verify
lexicon subject | ¢ behavioral R
. P identify
—| lexicon responses , , o generalization | ontology |
new rel
terms
I HT
oo analyze | Jidentify J identify 0 F
situation ™ behavioral importance —> disjoint >
responses relationship Y
|)
Figure 5 — Proposed Lexicon Based Ontology Construction Process
5.2 Example
In this section we exemplify the proposed ontology O Ontology Structure DAMLAOIL
. . . (section 2) (used by the OilEd tool)
construction process presented in section 5. Automated ¢ [Concept Class
support.for ontol(.)g'y edition and reasoning were key & | Relation Property
factors in our dec.lsmn for DAMLAOIL as the ontqlogy 3¢ | concept hierarchy Subsumption relationship:
language used to implement our example. Another issue SubClassOf
that influenced our decision is today’s large community of ®el | function that relates the | Restriction
DAML users and the existence of a public ontology ~ Z‘;:‘,“pts non taxonomically —
library. We are currently using the OILed tool for edition A o - S
and the FaCT tool as an inference engine to build our Table 1 — terminology mapping between the O
ontologies. OIL’s formal semantics and efficient Blgg}lofz()litmcmre and the ontology language

reasoning support is provided by Description Logics. The
semantics of OIL rely on translation into the description
logic SHIQ extended with concrete data types, SHIQ(d) .
A complete mapping of Oil to SHIQ(d) is available in
[Horrocks99]. OilEd generates DAML extension
ontologies, using an export mechanism.

OIL implements all ontology core elements of the O
ontology structure, introduced in section 2. The
terminology mapping is depicted in Table I. Concepts are
mapped to OIL classes, relations are properties, a class
hierarchy is implemented using the subsumption
relationship SubClassOf, and the function that relates
concepts in a non taxonomic way are mapped to
restrictions. Another issue that influenced our decision is
today’s large community of users and the existence of
public DAML+OIL ontology libraries. The prevailing
philosophy in the literature is to stimulate maximum
ontology reuse, as a means to shorten development time.

One of the ontologies we have build is the ontology for
a meeting scheduler. The lexicon we used in this case was
built in 1998, and was inspired by the problem description
proposed by Axel van Lamsweerde. This description
aimed to be a benchmark in which to test and compare
different requirements approaches [Lemsweerde95]. The
lexicon describes the procedures of scheduling meetings at
the University of Belgrano [Hadad99]. This example was
implemented using the OilEd and FaCT ontology using
lists of concepts, relations and axioms, as proposed in
process P,. The FaCT tool provides automated reasoning
to support our consistency checks. The ontology was
written in the OIL ontology language and exported to the
DAML format. The terminology used by DAML~+OIL is
different from the one used by our ontology definition, the
O ontology structure proposed by [Maedche02], although
the concepts are the same. A complete mapping of terms

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

YF]',F.

COMPUTER
SOCIETY

is provided by Table I. In this section we are going to use
OIL terminology.

Central to the idea of ontology engineering is clearly
distinguishing concepts from relationships [Gandon02].
We started building the ontology by first separating the
lexicon terms in different listings according to its
classification (steps 1 and 2 of process P,). The lexicon
classification of terms helps distinguishing from lexicon
terms that are directly mapped to the ontology from those
who need further analysis. Terms marked as object and
subject are usually mapped directly into classes (concepts)
of the ontology (step 3). Similarly the verb terms are
usually mapped into properties (relations) (step 4).
Properties are the building blocks of class restrictions
(function that relates the concepts non taxonomically —
rel) that serve to relate ontology classes (step 3.1.1.3).
The state terms have to be evaluated in order to decide
whether they would be best modeled as a class or property
(step 5). Axioms are derived from an analysis of
behavioral responses of terms of types subject, object and
state (steps 3.1.1.4 and 5.1.1.2).

We start building a skeleton of the ontology using the
object and subject terms first. For each term, a new class
must be added whose description is the notion of the
lexicon term (3.1). The behavioral responses of the term,
that describe the relationships to other lexicon terms are to
be added as restrictions to the class (3.1.1). The
behavioral responses that describe the relationship to
other lexicon terms, of types object or subject, should be
immediately implemented by creating a restriction that
relates both terms, and whose property label is the nature
of the relationship (usually described by a transitive verb)
as it appears in the behavioral responses of the term in the
lexicon (3.1.1.2).

Figure 6-a shows the lexicon term - initiator - and
Figure 6-b a screen snapshot of the OilEd tool showing
the implementation of the class initiator and Figure 6-c a
screen snapshot of the implementation of the properties of
the meeting scheduler ontology. Notice in Figure 6-b that
there is a name for the class (initiator), documentation
(obtained directly from the notion of the lexicon term, as
indicated by the arrow), a list of superclasses, i.e., the
classes which the class initiator is a subclass of, and a list
of restrictions (that are derived from the behavioral
responses of term initiator, The restrictions for class
iniator are formed using properties of the meeting
scheduler ontology. — Figure 6-c shows a part of the list of
properties of the meeting scheduler ontology.

Listed as one of the superclasses of the class initiator
(Figure 6-b) is class person#2. Note the symbol # in the

name of the class. It indicates that the concept person was
not defined locally, but borrowed from another ontology.
In this case we used the general.1.0.daml ontology
proposed by Jeff Heflin as ontology that models many
general concepts that are required by other ontologies.
This ontology is public and available at [general]. The
symbol # stands for the alias for namespace #2, the URL
where the file containing ontology general.1.0.daml is
located. There is no limit to the number of concepts or
different ontologies used in the composition of a new one.

The description of both notions and behavioral
responses of lexicon terms make use of terms that are not
lexicon terms themselves. These terms are part of the
minimal vocabulary of the lexicon, i.e., are assumed to be
fully understood by readers, and therefore do not deserve
an explicit entry in the lexicon. Something similar happens
when building ontologies, i.e., sometimes concepts are
‘relevant’ but no ‘specific’ to a domain [Guarino97], in
those cases the commonsense meaning of the concept
suffices for the ontology purposes. In ontologies, as
opposed to the lexicons, if a concept is used in the
definition of others it has to be made explicit, but does not
necessarily need to be “reinvented”. In those cases the
ideal procedure is to reuse the concept from another
ontology. This is the case with the concept person — it
belongs to the minimal vocabulary, i.e., bears no
particular or specific meaning in the meeting scheduler
application (6.1.2.1). Ideally the effort of ontology
building should be concentrated in modeling only the
concepts with specific contextual meaning and maximize
reuse from concepts defined in other ontologies.

The restrictions are obtained from the behavioral
responses of the lexicon term initiator. The first step is to
make sure that there is a property that expresses the verb
in the behavioral response (3.1.1.1). This check is done in
the properties panel, shown in Figure 6-c. The first
behavioral response of the term initiator, “defines goal”,
uses the verb define in the present tense. “Defines” was
added as a property (3.1.1.2), so that it could be used to
compose one or more class restrictions. The restriction is
the first shown in the restriction panel in the bottom right
of Figure 6-b (3.1.1.3). The first restriction in the list
relates the current class (initiator) to another class in the
ontology, goal (observe the class panel in the left. The
class goal appears above the initiator class) using the
property “defines”. This is a non taxonomical relation
between the classes initiator and goal. In fact, the only
taxonomical relation held by the class initiator is to its
superclass, person#2.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

Initiator type: subject =210
File Loy Reasoner Help Export
Notions: || | | B B E| V| &
o that invites oh [~ mawduats | Axioms | Container | Namespaces |
ers¢_)n a I_I'I_II es other Classes i IE Properties
meeting participants. = 7
Classgs 1 HrName Properties
He or she may be a \ |
articipant. _ = | f{initiator ® SubclassOf
=) SameClassis
Behavioral responses: - rDocumentation
day # A Person that invites other |1 J
Defines qoal. |[€] distribikion material [|[meeting participants. e
DeNnes eetin tei s .E\-'ent ar she may be a meeting |
Defikes agenda. exclusiop set il
le ra Ancihla fAr ~rancallatinne goal person #2
' hiour #1
©) [=] initiatar
rigeling i] 6] X 5] X
- meeting cancellation :
[PTDI]EHIES meeting communications rRestrictions
Propertiks I[E] mesting date 5 | e ——_filler |
meeting details J e
IE' assig rriesting materials : gngeend'é' ST
[F] change\reseration [l meet i si.. meeting cancellation
e T8 1Ing raquest ~ | |[@informs _ potential participant.. | -
[P] composag af T = | @organies agenda
— Find - i
[P] defines | I BEEES

E ends

E infarms

E irvites

Note that the terminology used to name the property is
the same used in the lexicon term, even the verb tense is
respected. Observe the properties column in the restriction
panel in Figure 6-b and compare them to the verbs used in
the behavioral responses of the term initiator in Figure 6-
a. Arrow III shows one of these comparisons.

For the lexicon terms of type verb, we first check the
properties list (4.1.1). By the time lexicon terms of type
verb are added to the ontology it is possible that its
corresponding property was already added as a result of
the implementation of the behavioral responses for the
terms of types object and subject added in the previous
step (3.1.1.2). If that is not the case, we add a new
property (4.1.1.1) to the list of existing properties. We
show an example of the implementation of the lexicon
term of type verb notify using the OilEd tool in Figure 7.
In the left panel the list of properties is shown. notify is
highlighted. In the right panel we show the list of classes
that use the property. Note that the property notify is used
by four classes. Three of the classes, substitute,
participant and secretary, were derived from lexicon
terms of type subject that bear the same name, the meeting

Figure 6 — a) lexicon entry for term initiator, b) OilEd screen snapshot
of the meeting scheduler ontology class initiator ¢) OilED screen
snapshot of the list of properties for the meeting scheduler ontology.

cancellation class was derived from a verb. Those terms
were added to the ontology before the term notify. By the
time we got to term notify (4.1.1) the property already
existed. It is only natural to suppose that, the lexicon being
built using the closure principle, situations as such are
frequent as we approach the end of the ontology
implementation process.

Classes nﬂ Properties Individuals r.nxiums Contail
[F] assigns ~ | Usage of

[F] change_resetvation .

[F] composed_of natity

[F] defines

[F] ends Classes

[F] informs substitute

[F] invites meeting cancelation
[E] iz_available participant

[F] iz_irtormed secretary

[F] is_registered

[FT notiy

[F] pan_or Individuals

[F] register_cancelation

Figure 7— The implementation of lexicon term
notify as a property

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

The hardest decision is what to make of the state type
terms. There are some cases where a state can be modeled
either as a class or property (5.1.2 / 5.1.3). A design
decision must be then made. The answer usually lies in the
scope defined for the ontology. How important is the state
in the application? [NoyOl-a]. We recommend the use of
ontology competency questions. The latter are the list of
questions that a knowledge base based on the ontology
should be able to answer [Gruninger95]. This exercise
consists of systematically formulating questions whose
answers involve the lexicon term in question. Questions
should revolve around determining the nature of the term,
how it is to be obtained, what other ontology classes are
related to it and what if type of questions. Roughly, the
competency questions are the behavioral responses of a
lexicon term, reformulated as questions (5.1.1.1).

Because ontologies use a taxonomic organization,
based on generalization, special attention must be given to
lexicon terms that bear part-of/whole relationships among
them. Part-of relationships are be expressed in ontologies
by means of properties (3.1.1.2) According to Guarino an
Welty understanding the proper meaning of the part-of
relation is often what ontological analysis is all about
[Guarino02].

The ontology construction process is naturally bottom
up. We begin with a concept (lexicon term) from the
lexicon and systematically add new properties and classes
around it. The result is a web of interconnected concepts.
In this approach, we emphasize putting together as
opposed to diving up, which in turn helps the
identification of commonalities among concepts
[Uschold96]. The identification of common aspects shared
by two or more concepts in an ontology may suggest the
creation of a generalization for those concepts (6.1),
provided that there is either an ontology concept (6.1.2) or
a term of the minimal vocabulary of the lexicon can be
found to (6.1.2.1) represent the generalization. We do not
introduce new concepts for the sake of generalization
alone. We view this strategy very cautiously, and would
rather avoid the introduction of artificial concepts that
may be foreign to the Universe of Discourse.

6. Conclusion: Application Ontology versus
Domain Ontology

We claim that application ontology construction must
be of responsibility of the requirements engineering team.
This non-functional requirement was recently put forward
by the Semantic Web community as a means to support
application interoperability on the Web[Berners-Lee02].
From that standpoint, we survey some of the ontology
languages, tools and building methodologies that are
currently being put to practice by the Web community. In
addition, we propose a requirements engineering based
process for the construction of ontologies. The process is
centered on a established technique, the language
extended lexicon (LEL). Based on a lexicon of the

application, we provide an implementation independent
process that builds an ontology for this application. The
lexicon is the main source of knowledge for building the
ontology. The lexicon has a quality oriented construction
process systematized by sub-processes for elicitation,
modeling and analysis, and our ontology construction
process preserves this characteristic. As such, we are able
to produce an application ontology that is quality oriented..
We demonstrate our approach by modeling a meeting
scheduler ontology in the ontology language OIL. The
analysis of the ontology is done with the aid of an
automated reasoner, implemented by the FaCT tool.

Current ontology literature points out to several topics
that require further research[Fensel03, Gandon02,
Hendler01, Davies03]. It is our belief that the requirements
engineering community can significantly contribute to the
advancement of some of shortcomings in the area of
ontology development and management. In this spirit we
list some of the areas, we identified greater potential for
contributions.

Although some of the work in ontology construction
mention evaluation aspects, we feel that there is a lack of
strategies to validate ontologies. We know ways to verify
ontologies, either by checking their internal consistency or
by comparing them to other models. However, the
literature does not deal with ontology validation as we do
for other software artifacts. For instance; how do I test an
ontology? Who are the customers of an ontology: agents or
human beings? If agents, how could I measure the efficacy
of the application ontology? We will continue to improve
our process, by means of applying it to other lexicons that
we have built in the past, and by studying the ontology
validation aspect, focusing on ways to incorporate it into
our process. We will also study the evolution aspect.

Concluding, we would like to stress the differences in
envisioning ontology in the more traditional way versus the
actual usage of ontology in the Semantic web.

Ontology, in the traditional way is supposed to reflect
with precision and formality the well established
knowledge of a given area. In that sense is it like a theory,
it should be stable and throughout used. Of course that its
construction demands time. We see a large similarity with
the movement towards domain engineering [Prieto-Diaz91]
from the point of view of software reuse.

Notwithstanding, a quotation from Hendler - “Instead of
a few, large, complex, consistent ontologies that great
numbers of users share, I see a great number of small
ontological components consisting largely of pointers to
each other. Web users will develop these components much
the same way that Web components are created” [Hendler
2001] — stresses the point we are making. That is, we will
need application ontologies to enable agent cooperation on
the web. As such, application ontologies are more much
restricted than domain ontologies and have a much more
modest objective. ~We again, stress that requirements
engineers should be prepared to produce such application

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

ontologies, as software designers will have to learn on
how to best use these application ontologies. According to
a recent report from the Gartner group “By 2005,
lightweight ontologies will be part of 75 percent of
application integration projects” [Jacobs02]. Research is
just opening the trails, avenues will follow as we tackle
aspects of evolution and validation.

Bibliography:

Books:

|Davies03] — Davies, J., Fensel, D.; Hamellen, F.V ., editors — Towards the
Semantic Web: Ontology Driven Knowledge management — Wiley and Sons —

2003.

|Fensel01] — Fensel, D. — Ontologie: a silver bullet for knowledge management and
electronic commerce — Springer, 2001

[Fensel03] — Fensel, D.; Wahlster, W.; Berners-Lee, T.; editors — Spinning the
Semantic Web — MIT Press, Cambridge Massachusetts, 2003,

|Geroimenko03| — Geroimenko, V.; Chen, C.; editors — Visualizing the Semantic
Web: XML Based Internet and Information Visualization — Springer, 2003.
[Hjelm01] — Hjelm, H. — Creating the Semantic Web with RDF — Wiley- 2001
[Maedche02] — Maedche, A. — Ontology Learning for the Sematic Web — Kluwer
Academic Publishers — 2002,

|Sowa00] — Sowa, J. F. — Knowledge Representation: Logical, Philosophical and
Computational Foundations — Brooks/Cole Books, Pacific Grove, CA —2000.

Tools:

|OilEd site| - http://oiled.man.ac.uk/

[Erdmann02] — Erdmann, M.; Angele, J.; Staab, S.; Studer, R. - OntoEdit:
Collaborative Ontology Development for the Semantic Web - Proceedings of the
first International Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002,
Sardinia, Italia

|Bechhofer01] - Sean Bechhofer, lan Horrocks, Carole Goble, Robert Stevens.
OilEd: a Reason-able Ontology Editor for the Semantic Web. Proceedings of
KI2001, Joint German/Austrian conference on Artificial Intelligence, September 19-
21, Vienna. Springer-Verlag LNAI Vol. 2174, pp 396--408. 2001.

[McGuiness02] — McGuiness, D.; Fikes, R..; Rice, J.; Wilder, S. — An Environment
for Merging and Testing Large Ontologies — Proceedings of the Seventh
International Conference on Principles of Knowledge Representation and Reasoning
(KR-2000), Brekenridge, Colorado, April 12-15, San Francisco: Morgan Kaufiann.
2002. pp.483-493.

[Chimaera00] — Chimaera ontology environment - www.ksLstanford.edw/software/chimacra
[FaCT] - Fast Classification of Terminologiess - TOOL -
http://www.cs.man.ac.uk/~horrocks/FaCT/

|Noy01-b] — Noy, N.; Sintek, M.; Decker, S.; Crubezy, R.; Fergerson, R.; Musen,
A. — Creating Semantic Web Contents with Protégé 2000 — IEEE Intelligent
Systems Vol. 16 No. 2, 2001. pp. 60-71

Methods:

[Fernandez-Lopez97]- M. Fernandez, A. Gomez-Perez, and N. Juristo.
METHONTOLOGY: From Ontological Arts Towards Ontological Engineering. In
Proceedings of the AAAI97 Spring Symposium Series on Ontological Engineering,
Stanford, USA, pages 33--40, March 1997,

|Gomez-Pérez98] — Gomez-Pérez, A. — Knowledge sharing and reuse — in The
Handbook of Applied Expert Systems. CRC Press, 1998

[Gruninger95] — Gruninger, M.; Fox, M. — Methodology for the Design
and Evaluation of Ontologies: Proceedings of the Workshop on basic
Ontological Issues in Knowledge Sharing — IJCAI-95 Canada, 1995.
[Noy01-a] — Noy, N.; McGuiness, D. — Ontology Development 101 — A
guide to creating your first ontology — KSL Technical Report,
Standford University, 2001.

[Sure03] — Sure, Y.; Studer, R. — A methodology for Ontology based
knowledge management in Davies, J., Fensel, D.; Hamellen, F.V,
editors — Towards the Semantic Web: Ontology Driven Knowledge
management — Wiley and Sons — 2003. pp. 33-46.

[Ushold96] - Ushold, M.; Gruninger, M. — Ontologies: Principles,
Methods and Applications. Knowledge Engineering Review, Vol. 11
No. 2 - 1996. pp. 93-136

Languages:
|Farquhar97|-Farquhar, A. -
web.stanford.edu/people/axf/tutorial.pdf
|Genesereth91]- M. R. Genesereth: Knowledge interchange format. In J. Allen, R.
Fikes, and E. Sandewall, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Second International Conference (KR'91). Morgan
Kaufmann Publishers, San Francisco, California, 1991

[Heflin01] — Heflin, J.; Hendler, J. — A portrait of the Semantic Web in Action - IEEE
Intelligent Systems — March/April - 2001. pp.54-59.

|Hendler00| — Hendler, J.; McGuiness, D. — The DARPA agent Markup Language .
IEEE Intelligent Systems. Vol 16 No 6, 2000. pp.67-73.

[McGuiness03] — McGuiness, D.; Harmelen, F. - OWL Web Ontology Overview —
W3C Working Draft 31 March 2003

Ontolingua tutorial - http://ksl-

General:

[Berners-Lee02] — Berners-Lee, T.; Lassila, O. Hendler, J. — The Semantic Web —
Scientific American — May 2001 —

|Gruber93] — Gruber, T.R. — A translation approach to portable ontology
specifications — Knowledge Acquisition — 5: 199-220

[Hendler01] - Hendler, J. — Agents and the Semantic Web — IEEE Intelligent Systems
— March/April -2001. pp.30-37

|Buranarach 01| — Buranarach, M. The Foundation for Semantic Interoperability on
the World Wide Web — Doctoral thesis - Department of Information Science and
Telecommunications - School of Information Sciences - University of Pittsburgh -
November 8, 2001.

[Everett02] — Everett, J.O; Bobrow, D.; Stolle, R.; Crouch, R.; Paiva, V;
Condoravdi, C.; van der Berg, M.; Polanyi, L. — Making Ontologies Work for
Resolving Redundancies Across Documents — Communications of the ACM, Vol. 45
No. 2 - February 2002

|Gandon02] — Gandon, F. _ Ontology Engineering; a sinthesis — Project Acacia —
INRIA Technical Report 4396 — March 2002 — 181 pages

[Gruninger02] — Gruninger, M.; Lee, J.; - Introduction to the Ontology Application
and Design section — guest editors — Communications of the ACM — February, Vol.
45, No.2 February 2002 — pp.39-41.

[Guarino02] - Gurarino, N.; Welty, C.; - Evaluating Ontological Decisions with
Ontoclean— Communications of the ACM, Vol. 45 No. 2 - February 2002 — pp.61-65
|Guarino98| — Guarino, N. - Formal Ontology and information systems — In
Proceedings of the FOIS’98 — Formal Ontology in Information Systems, Trento —
1998.

|Hadad99] — Hadad, G.; Doorn, J.H.; Kaplan, G.N.; Leite, J.C.S.P. — Enfoque
middle-out en la construccion e integracién de escenarios - II (Ibero-American)
Workshop on Requirements Engineering - Buenos Aires, September, 1999. Pp. 79-94,
|Horrocks99] - 1. Horrocks, U. Sattler, and S. Tobies: Practical reasoning for
expressive description logics. In H. Ganzinger, D. McAllester, and A. Voronkov,
editors, Proceedings of the 6th International Conference on Logic for Programming
and Automated Reasoning (LPAR'99), number 1705 in Lecture Notes in Artificial
Intelligence, pages 161-180. Springer-Verlag, 1999.

|Jacobs02] — Jacobs, J.; Linden, A.; - Gartner Group Research Note T-17-5338, 20
August, 2002.

[Kaplan00] - Kaplan, G.; Hadad, G.; Doorn, J.; Leite, J.C.S.P. —Inspeccion del
Lexico Extendido del Lenguaje— In Proceedings of the Workshop de Engenharia de
Requisitos — WER’00 — Rio de Janeiro, Brazil — 2000.

[Lamsweerde95] - Goal-directed elaboration of requirements for a meeting scheduler:
problems and lessons learnt - in the Proceedings of the Second IEEE International
Symposium on Requirements Engineering (RE'95) - York, March 27 to 29 — IEEE
Computer Society Press, 1995 — pp.194-203

|Leite00] - Leite, J.C.S.P., ., Hadad, G., Doorn, J., Kaplan, G. — Scenario
Construction Process - Requirements Engineering Journal vol(5) N.1 pp. 38-61 —
Springer Verlag - 2000.

|Leite90] - Leite, J.C.S.P.; Franco, A. P. — O uso de hipertexto na c¢licitagdo de
linguagens de da aplicagio — em Anais do 4 Simpésio Brasileiro de Engenharia de
Software— editado pela Sociedade Brasileira de Computagdo — pp.124-133 — 1990.
|Leite93] - Leite, J.C.S.P.; Franco, A.P.M.Franco - A Strategy for Conceptual Model
Acquisiton. Proceedings of the IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, Pags. 243-246, San Diego 1993.
[Potts97] — Potts, C. — Requirements Models in Context - Proceedings of the third
IEEE Symposium on Requirements Engineering RE97 — Annapolis, Maryland — 1997
- pp.102-104

[Prieto-Diaz91] — Prieto-Diaz, R., and Arango, G. (eds.) Domain Analysis and
Software Systems Modeling. Los Alamitos, Ca.: IEEE Computer Society Press, 1991

Mini Tutorial Summary:

The presentation of this mini-tutorial will include the following topics: a) Introduction,
b) Ontologies in the Semantic Web (the Tim Berners Lee vision) ¢) Ontology
concepts, d) Ontology languages and tools €) Ontology construction (our approach
versus others approaches), f) Application ontology versus Domain ontology, g)
Examples, h) Applications g) Further Research.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11th IEEE International Requirements Engineering Conference
1090-705X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

