
Semantic Web Services Framework for Manufacturing
Industries

Andrei Lobov, Fernando Ubis Lopez, Vladimir Villaseñor Herrera, Juha Puttonen and Jose L. Martinez Lastra
Department of Production Engineering

Tampere University of Technology
P.O. Box 589, Tampere, Finland, 33101

{andrei.lobov, fernando.ubis, vladimir.villasenorherrera, juha.puttonen & jose.lastra}@tut.fi

 Abstract – Application of Semantic Web Services (SWS)
relies on ontologies which model existing explicit knowledge in
problem domain. Adaptation of SWS to manufacturing
industries rises a number of important questions among which is
the separation of responsibilities between different vendors
starting from system component manufacturers and ending with
the system user. This paper gives a possible solution to settle
these responsibilities and describes the architecture for the
orchestration of semantic web services.

 Index Terms – Semantic Web Services, Factory Automation.

I. INTRODUCTION

Semantic Web Services (SWS) can be seen as self-
contained and self-describing software components that can
be discovered and invoked on the Web. These are seen as a
next step in evolution of World Wide Web (WWW) [3]. A set
of standards is defined by World Wide Web Consortium
(W3C) [11] and Organization for Advancement of Structured
Information Standards (OASIS) [12] in order to address
different aspects of SWS application, some notable
developments can be found in [8], [9] and [10].

Emerging as software engineering paradigm, SWS start to
find their way in industry and in particular in the domain of
factory automation [4], [7]. Different aspects of SWS
application can be found in [1], [2], [3] and [5]. [1] contains a
discussion on Artificial Intelligence (AI) and SWS stating that
it was realized that “essential element of AI’s knowledge-
based paradigm is (…) casual relationship between a system’s
explicit knowledge representation and its (intelligent)
behavior.” The ‘intelligence’ here can be seen as an ability to
extract implicit knowledge given explicit knowledge.

At the moment given the production line equipped with
the robotic and manual workstations and transportation (e.g.
conveyor) system, an engineer needs to obtain requirements
telling what the entire production system should do. The
requirements can come in a narrative form and/or be
expressed in some supportive high-level languages, e.g. Gantt
charts, flowcharts, etc. The required process is then
implemented using dedicated Programmable Logic Controller
(PLC) and robot programming languages. While being
applicable for mass production, such a development process
results in a production line that contains small room for
reconfigurability. That is, on the arrival of new unforeseen

product that customer wants to do with the line, the line
should be reprogrammed to adapt new product demands.

SWS can be seen as a possible solution that enhances
possibilities for production systems reconfigurability. SWS
aim to detach a product from its manufacturing equipment
through the processes required by the product and provided by
the equipment. Therefore, the production line abstracted as a
set of processes (services) it can provide allows to direct such
system development based on the processes it provides instead
of products it should manufacture. The idea is to shift from
low-level programming of sequencing sensor readings and
activations of actuators to the high-level programming of the
pieces of equipments providing services.

Service description is done in Web Service Description
Language (WSDL) [8]. The service invocations or service
orchestration can be implemented by means of Business
Process Execution Language (BPEL) [9]. The BPEL can
allow expressions for cross-companies scenarios where
service invocations are executed on different parties of the
supply chain [6]. The BPEL originates from workflows; it is a
graphical language that contains rectangular-shaped service
invocation and diamond-shaped decision blocks. The structure
of BPEL can be detailed down from higher level process
involving different companies in supply chain, taking, for
example, several days between different steps, to conveyor
segment service invocation loading a pallet within a few
seconds at the factory floor [13]. It should be noted however,
that web services paradigm coming from so-called office
automation should be applied with precautions at the factory
floor due to inapplicability of simple rollback or recovery
procedures available in the software world to the realm of the
physical world.

Web Ontology Language (OWL) [10] is used to represent
the knowledge available in the problem domain. The implicit
knowledge can be derived by SPARQL Protocol and RDF
Query Language (SPRQL) [14]. A set of ontologies have to be
developed to allow inter-mapping processes, products and
equipments. One can also define Semantic Web Services as
the web services described in ontologies. A framework
described in the paper defines the business chain for SWS and
details architecture to allow application of SWS.

The rest of the paper is outlined as follows: second
section details service orchestration framework, third section
discusses SWS Framework. Fourth section gives an

Proceedings of the 2008 IEEE
International Conference on Robotics and Biomimetics
Bangkok, Thailand, February 21 - 26, 2009

978-1-4244-2679-9/08/$25.00 ©2008 IEEE 2104

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on May 12,2010 at 13:54:32 UTC from IEEE Xplore. Restrictions apply.

application example. The conclusions are drawn in fifth
section.

II. SERVICE ORCHESTRATION FRAMEWORK

 The orchestration means the composition of the web
services in order to provide more complex process (service).
This composition can be supported by BPEL. Fig. 1 defines a
service orchestration architecture having three main elements:
orchestrator, service oriented middleware and decision
support system (DSS). An orchestrator is a tool chain
allowing discovery and definition of services in use. In
addition it provides validation of service compositions. The
role of the orchestrator is to check if the manufacturing of a
given product is possible in principle given a set of available
services. The orchestrator deploys an orchestration engine to
the service oriented middleware.
 The role of middleware is to outsource (execute) the
functionality that may not be performed by the basic units in
architecture (i.e. services – in this case). The middleware hosts
a set of orchestration engines. The orchestration engine (OE)
represents the needs of the product. The OE exists at run-time
to fulfill the needs of a product. That is, it discovers available
services, maps these to the existing devices and does the
service invocation for product manufacturing. The OE can
resolve some of basic conflicts such as mutual exclusion for
the access by different products the same working area.
However, some decision making is outsourced to DSS.
 The DSS is a multi-agent system (MAS) attached to the
same communication backbone as the orchestrator and the
middleware. It is capable of performing functionality usually
attributed to manufacturing execution systems (MES). That is,
monitoring of throughput, load balancing, etc. The agents as
the main building blocks of DSS coexist with services at
runtime.

Fig. 1. Service Orchestration Framework

Fig. 2. Dynamic Service Invocation

 One important feature of the systems following principles
of Service Oriented Architecture (SOA) is the ability to be
dynamically discovered and invoked. That is, the newly
added device can inform on its arrival or be discovered by
application of corresponding protocols. Device Profile for
Web Services (DPWS) [15] is used to implement services in
the production line. An example of the service could be a
painting service of a robot which receives as an input an area
that has to be painted or the transfer service for the conveyor
segment. The orchestration of abovementioned services can be
seen as a composite service that feeds the part into the
working area of the robot for painting.
 Principles of dynamic service invocation are highlighted
in Fig. 2. First, the service is discovered by using WS-
Discovery protocol of DPWS. A metadata of the service is
uploaded in order to locate a WSDL file containing
description of the service. A Service Explorer tool was
developed to allow automatic uploads the WSDL files (2) for
later service invocation (3). The tool is capable of automatic
service orchestration by reading BPEL scripts performing the
role of the orchestration engine. The orchestration engines can
be deployed independently to solve given BPEL scripts at run-
time. In certain circumstances, the OEs can request the DSS
for a decision that can be provided in the form of another
BPEL script.
 The WSDL can give information how to invoke an
operation on the device. However, it is solely the user’s
responsibility for possible consequences of service operation
invocation. That is, an invoker must “know” what it invokes.
At this level the semantic description of the device should be
introduced to allow automated binding of a service. In
addition to knowing the result of service invocation, one
should be able to compose the services to address the product
needs. Again a semantic description of product needs is
required to be mapped with the semantic description of the
equipment to check whether it is possible to fulfill the product
needs. Four basic areas providing semantic description of a
system and the product’s needs were suggested in [7]. A Web
Ontology Language (OWL) [10] is used to describe Process
Taxonomy, Product Ontology, Equipment Ontology and
Service Ontology.

2105

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on May 12,2010 at 13:54:32 UTC from IEEE Xplore. Restrictions apply.

 Fig. 3 highlights the utilization of OWL files by
orchestration engine in order to obtain the knowledge on
currently available resources and the state of the world (e.g.
number and location of products in the systems, operation
status of the equipments, etc.).

Fig. 3. Service orchestration and invocation step-by-step

As highlighted in the Fig. 3, a repository of OWLs files

should exist to “intelligently” orchestrate the system. Given
process taxonomy, the services provided by the equipments
should be modeled in terms of the process taxonomy. The
same is applicable for the products needs which have to be
‘grounded’ in the processes. OWL-S [16] – an upper ontology
for web services – is a bridge between the WSDL representing
physical devices available in the field and the equipments
providing those modeled in OWL. Another option for
including semantic information within a Web Service
definition is by using Semantic Annotations for WSDL and
XML schema (SAWSDL) [17]. SAWSDL is a W3C
recommendation that defines extensibility attributes based on
XML Schema, making possible to integrate semantic
description to some of the WSDL components.

The overall process of product manufacturing from
production system design to the ready made product being
manufactured can be sketched as follows:

1. Obtaining the Process Taxonomy;
2. Production system design in terms of Process

Taxonomy;
3. Definition of Equipment ontologies;
4. Product ontology definition;
5. Product manufacturing based on decisions made

by querying and updating of Equipment and
Product ontologies.

A question – who creates different OWL files? – is
answered in the following section.

III. SEMANTIC WEB SERVICES FRAMEWORK

 A set of tools are available to create ontologies and
perform reasoning on those. A detailed report on different tool
options can be found in [4]. We use Protégé tool [18] for
ontologies development, which provides a number of plug-ins
to support ontologies development. The Process Taxonomy,
Product Ontology, Equipment Ontology and Service Ontology
can be defined in Protégé. SPARQL queries can be used in
order to derive implicit knowledge on the system. A semantic

web framework for java (Jena) [19] provides an API allowing
to manipulate ontologies and execute SPARQL queries on
those.
 In order to make the overall approach applicable, the key
responsibility areas have to be defined. In order words the
business chain has to be established. One can identify four
main players for the production systems development and
application business chain. These are device vendor,
equipment vendor, system integrator and customer.
 Here, the customer possesses the knowledge on the
products that have to be manufactured. The device vendor
manufactures and sells basic components such as sensors and
actuators. The equipment vendor possesses an expertise on
how to build the machines that can be used in production
lines. The system integrator assembles the manufacturing
facilities from the available equipments. The boundaries
between different players can be ‘blurred’ in some cases, but
in general the rationally here is straight forward: someone
needs to provide sensors and actuators, someone needs to
compose machines based on these and, finally, someone needs
to integrate the production lines. The ‘blurring’ in the
separation of responsibilities that exists at the moment may be
attributed to the fact that the product indirectly dictates what
components production line should have – how it should look
like. The machine builder should have a deep knowledge on
the problem domain of its equipment application. Although
this situation seems to be natural and straightforward at the
moment, it may contain certain constrains due to mindset of
the machine builder. For instance, the basic operations of
drilling and painting can be found in many sub-domains
involving part manufacturing. However, due to narrow
focus – e.g. electronics assembly – the machine builder can
not see other business opportunities for its products (in this
case – machines).
 Fig. 4 highlights the role of four abovementioned players
in expressing their expertise in terms of ontologies and
WSDLs. Starting from bottom to up, the device vendor selling
basic devices provides WSDL files. These can be for instance
downloadable from its web site. The equipment vendor or
machine builder has to define upper ontology in order to
ground equipments built and the basic services these provide
as a composition of devices. System integrators may elaborate
equipment ontologies. For instance, the neighborhood
information can be defined as the pieces of equipments are
being assembled to the production line. In addition, the system
integrators may need to express some specific information on
the environment, which is related to the installation site of the
production equipments. The customer introduces information
on the product as product ontology.
 The process taxonomy has to be derived by standard
institution. The taxonomy allows bridging the product and the
equipments that have to manufacture it. The ontologies are
processed at runtime by orchestration engine that on one side
queries these using SPARQL through Jena API and on the
other dynamically invokes the services based on the WSDL
information (Fig. 4.).

2106

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on May 12,2010 at 13:54:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Semantic Web Services Framework

IV. APPLICATION EXAMPLE

 Robotics and production systems ontologies have been
defined in Protégé. The definition of an ontology starts with
outlining main concepts. The concepts are then organized into
hierarchy where the top element is a ‘Thing’ which properties
are extended and inherited down to the sub-concepts or sub-
classes. For instance the drive system of a robot can be
electric, pneumatic, hydraulic or magnetic. Fig. 5 shows a part
of robotics ontology, the ovals represent the concepts, the arcs
represents the generalization relationship. That is, having most
general class on the top (the ‘Thing’) the classes are
specialized farther from the root adding some extra properties
that make them differ from their siblings and their parents.
Therefore, in given example, the ‘DriveSystem’ is just under
the ‘Thing’ in class hierarchy and it is extended by four
different drive systems. Like in object-oriented programming,
ontologies can contain instances which may represent physical
entities available in real world. The instance can be defined
for any concept available in the ontology. In given example,
five different robots were represented as different unique
instances, among those is ‘puma560’ robot.

Fig. 5. Three concepts in robotics ontology

Fig. 6. Operations in robotics ontology

 The robots are capable of providing certain operations.
The operations shown in Fig. 6 are modeled in robotics
ontology; these are Welding, Transfer, Unloading, Cleaning,
Loading, Assembly, and Painting operations. The operations
assigned to different robots describe the problem domain at
hands – robotics. The link to the actual devices is done
through OWL-S. An example of SPARQL query bridging
these two domains is shown in Fig. 7. A spray gun attached to
the ‘puma560’ robot provides a painting operation, while the
robot provides ‘Paint’ service. The OWL-S plug-in in Protégé
allows to link the ‘Paint’ service and ‘puma560’ robot through
‘providedBy’ predicate. Therefore if given product requires a
painting service from the system a simple query can be used to
obtain the result. As can be seen in Fig. 7, first the prefixes are
defined in order to set up the possible locations of concepts,
instances and predicates. ‘SELECT’ keyword filters the
variables available in the query. ‘*’ symbol denotes that all
the variables (in this case ‘?object’ variable) will be returned
as a result. ‘FROM’ keyword highlights which document to
search, while ‘WHERE’ keyword notifies what has to be
searched and how. The query clauses are of the following
format: “subject predicate object”. An execution of the query
returns the instance of the ‘puma560’ robot.

PREFIX robotics: <http://www.owl-ontologies.com/robotics.owl#>
PREFIX service: <http://www.daml.org/services/owl-s/1.2/Service.owl#>
SELECT *
FROM <http://www.owl-ontologies.com/robotics.owl>
WHERE
{ robotics:Paint service:providedBy ?object. }

Fig. 7. Query example for robotics ontology

PREFIX prod:<http://www.owl-ontologies.com/ProductionSystem.owl#>
SELECT ?operator ?workstation
WHERE { prod:pallet2 prod:containsProduct ?product.
?product prod:requiresOperation ?operation.
?operator prod:performsOperation ?operation.
?conveyor prod:containsPallet prod:pallet2.
?operator prod:worksAt ?workstation.
?workstation prod:hasConveyorFrame ?frame.
?frame prod:hasConveyor ?conv.
?conveyor prod:hasNeighbor ?conv.
}

Fig. 8. Query example for production system ontology

2107

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on May 12,2010 at 13:54:32 UTC from IEEE Xplore. Restrictions apply.

 In comparison to rather trivial example provided in Fig. 7,
Fig. 8 presents a query example on production system.
Besides knowing that something can be done in the system in
principle (e.g. there is a possibility to paint a product), one
could be more interested to derive a solution on how a newly
introduced product can be manufactured in the system.
Having manual and robotic workstations in production system
one may be interested in finding a path for product to reach
the locations where the product needs can be (partially)
fulfilled. This scenario may require development of more
complex queries similar to the one shown in Fig. 8. The query
in Fig. 8 is not concerned with the operations the product
(prod:pallet2) is requiring, but rather it allows finding an
operator fulfilling the needs of the product. Given query, if
succeeds, besides finding the operator also confirms that there
exists a path in the system to the workstation capable to fulfill
product needs. ‘SELECT’ keyword can be used in order to
clarify the required output. The predicates can be made
transitive which significantly simplifies the query format. For
example, ‘hasNeighbor’ predicate is defined for the conveyor
segment. Being transitive, the predicate allows testing if pallet
containing a product can reach desired workstation by having
a single line in the query: ‘?conveyor
prod:hasNeighbor ?conv.’
 During system runtime, the ontologies have to be kept up
to date depending on the situation in the system. The
orchestration engines equipped with the SPARQL query
engines bear this responsibility.

V. CONCLUSIONS

 The Semantics Web Services Framework has been
discussed in the paper. The goal of the framework is to assess
the role of each element of the business chain in development
and application of service-enabled production systems. An
example based on robotics and production systems ontologies
was given to highlight basic ideas of ontologies development
and reasoning possibilities.
 The application of SOA principles allows implementing
loosely-coupled solutions for production systems aiming at
plug & play and reconfigurability capabilities for this class of
systems. From the end-user perspective, the goal is to shift
from hard coding of the “clients” (control applications for the
equipments) to the run-time discovery and usage of the
services (abstracting the equipments).

ACKNOWLEDGMENT

 The research is supported by SOCRADES research
project under the EU’s 6th Framework Programme
(http://www.socrades.eu).

REFERENCES
[1] M. d’Aquin, E. Motta, M. Sabou, S. Angeletou. L. Gridinoc, V. Lopez

and D. Guidi, “Toward a New Generation of Semantic Web

Applications,” IEEE Intelligent Systems, vol. 23, pp. 20-28, May-June
2008.

[2] M. Hepp, “Semantic Web and Semantic Web Services,” IEEE Intelligent
Computing, vol. 10, no. 2, pp. 85-88, March-April 2006.

[3] R. G. Pereira and M.M. Freire, “SWedt: A Semantic Web Editor
Integrating Ontologies and Semantic Annotations with Resource
Description Framework,” In Proc. of IEEE Advance International
Conference on Internet and Web Applications and Services
(AICT/ICIW’06), 2006

[4] J. L. Martinez Lastra, I. M. Delamer, F. Ubis Lopez, Domain Ontologies
for Reasoning Machines in Factory Automation, Tampere University of
Technology, Institute of Production Engineering, Report 71, ISBN 978-
952-15-1522-4, Tampere 2007

[5] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, “Service-
oriented computing: state of the art and research challenges”, IEEE
Computer, vol. 40, no 40, pp. 38-45, November 2007

[6] A. Bartoli, R. Jimenez-Peris, B. Kemme, C. Pautasso, S. Patarin, S.
Wheater, and S. Woodman, “The adapt framework for adaptable and
composable web services”. IEEE Distributed Systems Online, September
2005.

[7] I. Delamer, and J. L. Martinez Lastra, “Loosely-coupled automation
systems using device-level SOA”, In. Proc. of 5th IEEE International
Conf. on Industrial Informatics (INDIN’07), vol. 2, pp. 743-747, July
2007

[8] Web Services Description Language (WSDL) Version 1.1, available
online (August 2008) at: http://www.w3.org/TR/wsdl

[9] Web Services Business Process Execution Language Version 2.0,
available online (August 2008) at: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

[10] S. Bechhofer, et al., “OWL Web Ontology Language Reference”, W3C,
February 2004, available online (August 2008) at:
http://www.w3.org/TR/owl-ref/

[11] World Wide Web Consortium (W3C), http://www.w3c.org
[12] Organization for Advancement of Structured Information Standards

(OASIS), http://www.oasis-open.org
[13] J. Puttonen, A. Lobov and J. L. Martinez Lastra, “An Application of

BPEL for Service Orchestration in an Industrial Environment,” In Proc. of
13th IEEE International Conference on Emerging Technologies and
Factory Automation, September 2008, in press

[14] W3C, “SPARQL Query Language for RDF”, W3C Recommendation,
15.01.2008, available online (August 2008) at:
http://www.w3.org/TR/rdf-sparql-query/

[15] Device Profile for Web Services (DPWS), available online (August 2008)
at: http://schemas.xmlsoap.org/ws/2006/02/devprof/

[16] W3C, “OWL-S: Semantic Markup for Web Services”, W3C Member
submission, 22.11.2004, available online (August 2008) at:
http://www.w3.org/Submission/OWL-S/

[17] W3C, “Semantic Annotations for WSDL Working Group”, available
online (August 2008) at: http://www.w3.org/2002/ws/sawsdl/

[18] Stanford Center for Biomedical Informatics Research, “The Protégé
Ontology Editor and Knowledge Acquisition System”, available online
(August 2008) at: http://protege.stanford.edu/

[19] Jena, “Jena – A Semantic Web Framework for Java”, available online
(August 2008) at: http://jena.sourceforge.net/

2108

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on May 12,2010 at 13:54:32 UTC from IEEE Xplore. Restrictions apply.

