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 Abstract – Application of Semantic Web Services (SWS) 
relies on ontologies which model existing explicit knowledge in 
problem domain. Adaptation of SWS to manufacturing 
industries rises a number of important questions among which is 
the separation of responsibilities between different vendors 
starting from system component manufacturers and ending with 
the system user. This paper gives a possible solution to settle 
these responsibilities and describes the architecture for the 
orchestration of semantic web services. 
 
 Index Terms – Semantic Web Services, Factory Automation.  
 

I.  INTRODUCTION 

Semantic Web Services (SWS) can be seen as self-
contained and self-describing software components that can 
be discovered and invoked on the Web. These are seen as a 
next step in evolution of World Wide Web (WWW) [3]. A set 
of standards is defined by World Wide Web Consortium 
(W3C) [11] and Organization for Advancement of Structured 
Information Standards (OASIS) [12] in order to address 
different aspects of SWS application, some notable 
developments can be found in [8], [9] and [10]. 

Emerging as software engineering paradigm, SWS start to 
find their way in industry and in particular in the domain of 
factory automation [4], [7]. Different aspects of SWS 
application can be found in [1], [2], [3] and [5]. [1] contains a 
discussion on Artificial Intelligence (AI) and SWS stating that 
it was realized that “essential element of AI’s knowledge-
based paradigm is (…) casual relationship between a system’s 
explicit knowledge representation and its (intelligent) 
behavior.” The ‘intelligence’ here can be seen as an ability to 
extract implicit knowledge given explicit knowledge. 

At the moment given the production line equipped with 
the robotic and manual workstations and transportation (e.g. 
conveyor) system, an engineer needs to obtain requirements 
telling what the entire production system should do. The 
requirements can come in a narrative form and/or be 
expressed in some supportive high-level languages, e.g. Gantt 
charts, flowcharts, etc. The required process is then 
implemented using dedicated Programmable Logic Controller 
(PLC) and robot programming languages. While being 
applicable for mass production, such a development process 
results in a production line that contains small room for 
reconfigurability. That is, on the arrival of new unforeseen 

product that customer wants to do with the line, the line 
should be reprogrammed to adapt new product demands. 

SWS can be seen as a possible solution that enhances 
possibilities for production systems reconfigurability. SWS 
aim to detach a product from its manufacturing equipment 
through the processes required by the product and provided by 
the equipment. Therefore, the production line abstracted as a 
set of processes (services) it can provide allows to direct such 
system development based on the processes it provides instead 
of products it should manufacture. The idea is to shift from 
low-level programming of sequencing sensor readings and 
activations of actuators to the high-level programming of the 
pieces of equipments providing services. 

Service description is done in Web Service Description 
Language (WSDL) [8]. The service invocations or service 
orchestration can be implemented by means of Business 
Process Execution Language (BPEL) [9]. The BPEL can 
allow expressions for cross-companies scenarios where 
service invocations are executed on different parties of the 
supply chain [6]. The BPEL originates from workflows; it is a 
graphical language that contains rectangular-shaped service 
invocation and diamond-shaped decision blocks. The structure 
of BPEL can be detailed down from higher level process 
involving different companies in supply chain, taking, for 
example, several days between different steps, to conveyor 
segment service invocation loading a pallet within a few 
seconds at the factory floor [13]. It should be noted however, 
that web services paradigm coming from so-called office 
automation should be applied with precautions at the factory 
floor due to inapplicability of simple rollback or recovery 
procedures available in the software world to the realm of the 
physical world. 

Web Ontology Language (OWL) [10] is used to represent 
the knowledge available in the problem domain. The implicit 
knowledge can be derived by SPARQL Protocol and RDF 
Query Language (SPRQL) [14]. A set of ontologies have to be 
developed to allow inter-mapping processes, products and 
equipments. One can also define Semantic Web Services as 
the web services described in ontologies. A framework 
described in the paper defines the business chain for SWS and 
details architecture to allow application of SWS. 

The rest of the paper is outlined as follows: second 
section details service orchestration framework, third section 
discusses SWS Framework. Fourth section gives an 
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application example. The conclusions are drawn in fifth 
section.  

II. SERVICE ORCHESTRATION FRAMEWORK 

 The orchestration means the composition of the web 
services in order to provide more complex process (service). 
This composition can be supported by BPEL. Fig. 1 defines a 
service orchestration architecture having three main elements: 
orchestrator, service oriented middleware and decision 
support system (DSS). An orchestrator is a tool chain 
allowing discovery and definition of services in use. In 
addition it provides validation of service compositions. The 
role of the orchestrator is to check if the manufacturing of a 
given product is possible in principle given a set of available 
services. The orchestrator deploys an orchestration engine to 
the service oriented middleware. 
 The role of middleware is to outsource (execute) the 
functionality that may not be performed by the basic units in 
architecture (i.e. services – in this case). The middleware hosts 
a set of orchestration engines. The orchestration engine (OE) 
represents the needs of the product. The OE exists at run-time 
to fulfill the needs of a product. That is, it discovers available 
services, maps these to the existing devices and does the 
service invocation for product manufacturing. The OE can 
resolve some of basic conflicts such as mutual exclusion for 
the access by different products the same working area. 
However, some decision making is outsourced to DSS.  
 The DSS is a multi-agent system (MAS) attached to the 
same communication backbone as the orchestrator and the 
middleware. It is capable of performing functionality usually 
attributed to manufacturing execution systems (MES). That is, 
monitoring of throughput, load balancing, etc. The agents as 
the main building blocks of DSS coexist with services at 
runtime.  
 

 
Fig. 1. Service Orchestration Framework 

  

 
Fig. 2. Dynamic Service Invocation 

 
 One important feature of the systems following principles 
of Service Oriented Architecture (SOA) is the ability to be 
dynamically discovered and invoked.  That is, the newly 
added device can inform on its arrival or be discovered by 
application of corresponding protocols. Device Profile for 
Web Services (DPWS) [15] is used to implement services in 
the production line. An example of the service could be a 
painting service of a robot which receives as an input an area 
that has to be painted or the transfer service for the conveyor 
segment. The orchestration of abovementioned services can be 
seen as a composite service that feeds the part into the 
working area of the robot for painting. 
 Principles of dynamic service invocation are highlighted 
in Fig. 2. First, the service is discovered by using WS-
Discovery protocol of DPWS. A metadata of the service is 
uploaded in order to locate a WSDL file containing 
description of the service. A Service Explorer tool was 
developed to allow automatic uploads the WSDL files (2) for 
later service invocation (3). The tool is capable of automatic 
service orchestration by reading BPEL scripts performing the 
role of the orchestration engine. The orchestration engines can 
be deployed independently to solve given BPEL scripts at run-
time. In certain circumstances, the OEs can request the DSS 
for a decision that can be provided in the form of another 
BPEL script. 
 The WSDL can give information how to invoke an 
operation on the device. However, it is solely the user’s 
responsibility for possible consequences of service operation 
invocation. That is, an invoker must “know” what it invokes. 
At this level the semantic description of the device should be 
introduced to allow automated binding of a service. In 
addition to knowing the result of service invocation, one 
should be able to compose the services to address the product 
needs. Again a semantic description of product needs is 
required to be mapped with the semantic description of the 
equipment to check whether it is possible to fulfill the product 
needs. Four basic areas providing semantic description of a 
system and the product’s needs were suggested in [7]. A Web 
Ontology Language (OWL) [10] is used to describe Process 
Taxonomy, Product Ontology, Equipment Ontology and 
Service Ontology. 
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 Fig. 3 highlights the utilization of OWL files by 
orchestration engine in order to obtain the knowledge on 
currently available resources and the state of the world (e.g. 
number and location of products in the systems, operation 
status of the equipments, etc.). 
 

 
Fig. 3. Service orchestration and invocation step-by-step 

 
As highlighted in the Fig. 3, a repository of OWLs files 

should exist to “intelligently” orchestrate the system. Given 
process taxonomy, the services provided by the equipments 
should be modeled in terms of the process taxonomy. The 
same is applicable for the products needs which have to be 
‘grounded’ in the processes. OWL-S [16] – an upper ontology 
for web services – is a bridge between the WSDL representing 
physical devices available in the field and the equipments 
providing those modeled in OWL. Another option for 
including semantic information within a Web Service 
definition is by using Semantic Annotations for WSDL and 
XML schema (SAWSDL) [17]. SAWSDL is a W3C 
recommendation that defines extensibility attributes based on 
XML Schema, making possible to integrate semantic 
description to some of the WSDL components. 

The overall process of product manufacturing from 
production system design to the ready made product being 
manufactured can be sketched as follows: 

1. Obtaining the Process Taxonomy; 
2. Production system design in terms of Process 

Taxonomy; 
3. Definition of Equipment ontologies; 
4. Product ontology definition; 
5. Product manufacturing based on decisions made 

by querying and updating of Equipment and 
Product ontologies. 

A question – who creates different OWL files? – is 
answered in the following section. 

III. SEMANTIC WEB SERVICES FRAMEWORK 

 A set of tools are available to create ontologies and 
perform reasoning on those. A detailed report on different tool 
options can be found in [4]. We use Protégé tool [18] for 
ontologies development, which provides a number of plug-ins 
to support ontologies development. The Process Taxonomy, 
Product Ontology, Equipment Ontology and Service Ontology 
can be defined in Protégé. SPARQL queries can be used in 
order to derive implicit knowledge on the system. A semantic 

web framework for java (Jena) [19] provides an API allowing 
to manipulate ontologies and execute SPARQL queries on 
those. 
 In order to make the overall approach applicable, the key 
responsibility areas have to be defined. In order words the 
business chain has to be established. One can identify four 
main players for the production systems development and 
application business chain. These are device vendor, 
equipment vendor, system integrator and customer.  
 Here, the customer possesses the knowledge on the 
products that have to be manufactured. The device vendor 
manufactures and sells basic components such as sensors and 
actuators. The equipment vendor possesses an expertise on 
how to build the machines that can be used in production 
lines. The system integrator assembles the manufacturing 
facilities from the available equipments. The boundaries 
between different players can be ‘blurred’ in some cases, but 
in general the rationally here is straight forward: someone 
needs to provide sensors and actuators, someone needs to 
compose machines based on these and, finally, someone needs 
to integrate the production lines. The ‘blurring’ in the 
separation of responsibilities that exists at the moment may be 
attributed to the fact that the product indirectly dictates what 
components production line should have – how it should look 
like. The machine builder should have a deep knowledge on 
the problem domain of its equipment application. Although 
this situation seems to be natural and straightforward at the 
moment, it may contain certain constrains due to mindset of 
the machine builder. For instance, the basic operations of 
drilling and painting can be found in many sub-domains 
involving part manufacturing. However, due to narrow 
focus – e.g. electronics assembly – the machine builder can 
not see other business opportunities for its products (in this 
case – machines).  
 Fig. 4 highlights the role of four abovementioned players 
in expressing their expertise in terms of ontologies and 
WSDLs. Starting from bottom to up, the device vendor selling 
basic devices provides WSDL files. These can be for instance 
downloadable from its web site. The equipment vendor or 
machine builder has to define upper ontology in order to 
ground equipments built and the basic services these provide 
as a composition of devices. System integrators may elaborate 
equipment ontologies. For instance, the neighborhood 
information can be defined as the pieces of equipments are 
being assembled to the production line. In addition, the system 
integrators may need to express some specific information on 
the environment, which is related to the installation site of the 
production equipments. The customer introduces information 
on the product as product ontology. 
 The process taxonomy has to be derived by standard 
institution. The taxonomy allows bridging the product and the 
equipments that have to manufacture it. The ontologies are 
processed at runtime by orchestration engine that on one side 
queries these using SPARQL through Jena API and on the 
other dynamically invokes the services based on the WSDL 
information (Fig. 4.). 
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Fig. 4. Semantic Web Services Framework 

 

IV. APPLICATION EXAMPLE 

 Robotics and production systems ontologies have been 
defined in Protégé. The definition of an ontology starts with 
outlining main concepts. The concepts are then organized into 
hierarchy where the top element is a ‘Thing’ which properties 
are extended and inherited down to the sub-concepts or sub-
classes. For instance the drive system of a robot can be 
electric, pneumatic, hydraulic or magnetic. Fig. 5 shows a part 
of robotics ontology, the ovals represent the concepts, the arcs 
represents the generalization relationship. That is, having most 
general class on the top (the ‘Thing’) the classes are 
specialized farther from the root adding some extra properties 
that make them differ from their siblings and their parents. 
Therefore, in given example, the ‘DriveSystem’ is just under 
the ‘Thing’ in class hierarchy and it is extended by four 
different drive systems. Like in object-oriented programming, 
ontologies can contain instances which may represent physical 
entities available in real world. The instance can be defined 
for any concept available in the ontology. In given example, 
five different robots were represented as different unique 
instances, among those is ‘puma560’ robot. 
 

 
Fig. 5. Three concepts in robotics ontology 

 

 
Fig. 6. Operations in robotics ontology 

 
 The robots are capable of providing certain operations. 
The operations shown in Fig. 6 are modeled in robotics 
ontology; these are Welding, Transfer, Unloading, Cleaning, 
Loading, Assembly, and Painting operations. The operations 
assigned to different robots describe the problem domain at 
hands – robotics. The link to the actual devices is done 
through OWL-S. An example of SPARQL query bridging 
these two domains is shown in Fig. 7. A spray gun attached to 
the ‘puma560’ robot provides a painting operation, while the 
robot provides ‘Paint’ service. The OWL-S plug-in in Protégé 
allows to link the ‘Paint’ service and ‘puma560’ robot through 
‘providedBy’ predicate. Therefore if given product requires a 
painting service from the system a simple query can be used to 
obtain the result. As can be seen in Fig. 7, first the prefixes are 
defined in order to set up the possible locations of concepts, 
instances and predicates. ‘SELECT’ keyword filters the 
variables available in the query. ‘*’ symbol denotes that all 
the variables (in this case ‘?object’ variable) will be returned 
as a result. ‘FROM’ keyword highlights which document to 
search, while ‘WHERE’ keyword notifies what has to be 
searched and how. The query clauses are of the following 
format: “subject predicate object”. An execution of the query 
returns the instance of the ‘puma560’ robot. 
 
PREFIX robotics: <http://www.owl-ontologies.com/robotics.owl#> 
PREFIX service: <http://www.daml.org/services/owl-s/1.2/Service.owl#> 
SELECT * 
FROM <http://www.owl-ontologies.com/robotics.owl> 
WHERE 
{ robotics:Paint service:providedBy ?object. } 

Fig. 7. Query example for robotics ontology 
 
PREFIX prod:<http://www.owl-ontologies.com/ProductionSystem.owl#> 
SELECT ?operator ?workstation 
WHERE { prod:pallet2 prod:containsProduct ?product. 
?product prod:requiresOperation ?operation. 
?operator prod:performsOperation ?operation. 
?conveyor prod:containsPallet prod:pallet2. 
?operator prod:worksAt ?workstation. 
?workstation prod:hasConveyorFrame ?frame. 
?frame prod:hasConveyor ?conv. 
?conveyor prod:hasNeighbor ?conv. 
} 

Fig. 8. Query example for production system ontology 
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 In comparison to rather trivial example provided in Fig. 7, 
Fig. 8 presents a query example on production system. 
Besides knowing that something can be done in the system in 
principle (e.g. there is a possibility to paint a product), one 
could be more interested to derive a solution on how a newly 
introduced product can be manufactured in the system. 
Having manual and robotic workstations in production system 
one may be interested in finding a path for product to reach 
the locations where the product needs can be (partially) 
fulfilled. This scenario may require development of more 
complex queries similar to the one shown in Fig. 8. The query 
in Fig. 8 is not concerned with the operations the product 
(prod:pallet2) is requiring, but rather it allows finding an 
operator fulfilling the needs of the product. Given query, if 
succeeds, besides finding the operator also confirms that there 
exists a path in the system to the workstation capable to fulfill 
product needs. ‘SELECT’ keyword can be used in order to 
clarify the required output. The predicates can be made 
transitive which significantly simplifies the query format. For 
example, ‘hasNeighbor’ predicate is defined for the conveyor 
segment. Being transitive, the predicate allows testing if pallet 
containing a product can reach desired workstation by having 
a single line in the query: ‘?conveyor 
prod:hasNeighbor ?conv.’ 
 During system runtime, the ontologies have to be kept up 
to date depending on the situation in the system. The 
orchestration engines equipped with the SPARQL query 
engines bear this responsibility. 
 

V. CONCLUSIONS 

 The Semantics Web Services Framework has been 
discussed in the paper. The goal of the framework is to assess 
the role of each element of the business chain in development 
and application of service-enabled production systems. An 
example based on robotics and production systems ontologies 
was given to highlight basic ideas of ontologies development 
and reasoning possibilities. 
 The application of SOA principles allows implementing 
loosely-coupled solutions for production systems aiming at 
plug & play and reconfigurability capabilities for this class of 
systems. From the end-user perspective, the goal is to shift 
from hard coding of the “clients” (control applications for the 
equipments) to the run-time discovery and usage of the 
services (abstracting the equipments). 
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