Web Mining: Pattern Discovery from World Wide Web
Transactions *

Bamshad Mobasher, Namit Jain, Eui-Hong (Sam) Han, Jaideep Srivastava
{mobasher ,njain,han, srivasta}@cs .umn.edu
Department of Computer Science
University of Minnesota
4-192 EECS Bldg., 200 Union St. SE
Minneapolis, MN 55455, USA

March 8, 1997

Abstract

Web-based organizations often generate and collect large volumes of data in their daily
operations. Analyzing such data can help these organizations to determine the life time value of
clients, design cross marketing strategies across products and services, evaluate the effectiveness
of promotional campaigns, and find the most effective logical structure for their Web space.
This type of analysis involves the discovery of meaningful relationships from a large collection
of primarily unstructured data, often stored in Web server access logs. We propose a framework
for Web mining, the applications of data mining and knowledge discovery techniques to data
collected in World Wide Web transactions. We present data and transaction models for various
Web mining tasks such as the discovery of association rules and sequential patterns from the
Web data. We also present a Web mining system, WEBMINER, which has been implemented
based upon the proposed framework, and discuss our experimental results on real-world Web
data using the WEBMINER.

Keywords: data mining, world wide web, association rules, sequential patterns, web mining.

This work was supported in part by NSF grant ASC-9634719, Army Research Office contract DA/DAAH04-95-
1-0538, Cray Research Inc. Fellowship, and IBM partnership award, the content of which does not necessarily reflect
the policy of the government, and no official endorsement should be inferred. Access to computing facilities was
provided by AHPCRC, Minnesota Supercomputer Institute, Cray Research Inc., and NSF grant CDA-9414015. See
http://www.cs.umn.edu/~han/papers.html#DataMiningPapers for other related papers.

1 Introduction and Background

As more organizations rely on the World Wide Web to conduct business, traditional strategies
and techniques for market analysis need to be revisited. Organizations collect large volumes of
data and analyze it to determine the life time value of customers, cross marketing strategies across
products, and effectiveness of promotional campaigns. In the Web, such information is generally
gathered automatically by Web servers and collected in server or access logs. Analysis of server
access data can provide information on how to restructure a Web site for increased effectiveness,
better management of workgroup communication, and analyzing user access patterns to target ads
to specific groups of users. Most existing Web analysis tools [Inc96, eSI95, net96] provide very
primitive mechanisms for reporting user activity, i.e. it is possible to determine the number of
accesses to individual files, the times of visits, and URLs of users. However, these tools usually
provide little analysis of data relationships among the accessed files, which is essential to fully
utilizing the data gathered in daily transactions. A comprehensive analysis tool must automatically
discover such relationships among users accesses.

In this paper we describe a framework for the application of two data mining techniques, i.e.
discovery of association rules and sequential patterns to extract relationships from data collected by
Web servers. Recently, several researchers have proposed the application of data mining techniques
to facilitate information discovery on global information systems such as the Internet [ZH95,
KKS96]. The focus of these proposals is knowledge discovery across the Internet, based on content,
and not the analysis of user access patterns on various Web servers. Web server access logs, however,
have been used as a testbed for the application of certain data mining tasks such as the discovery
of frequent episodes [MTV95]. Recently, mazimal forward references have been proposed [CPY96]
as a way to extract meaningful user access sequences. Web mining is the application of data mining
techniques to large Web data repositories, examples of which are provided below.

Discovering Association Rules: In of Web mining, an example of an association rule is the
correlation among accesses to various files on a server by a given client. For example, using associa-
tion rule discovery techniques we can find the following correlations: (i) 60% of clients who accessed
the page with URL /company/products/, also accessed the page /company/products/productl.html;
(ii) 40% of clients who accessed the Web page with URL /company/products/productl.html, also
accessed /company/products/product2.html; and (iii) 30% of clients who accessed
/company/special-offer.html, placed an online order in /company/products/productl. In Web
mining additional properties of data can be used to prune the search space, since information about
a site’s structural hierarchy can be used. For example, if the support for /company/products/ is
low, one may conclude that the search for association between the two secondary pages with URLs
/company/products/productl and /companyl/products/product2 should be pruned since nei-
ther are likely to have adequate support.

Discovery of Sequential Patterns: Given a database of time-stamped transactions, the
problem of discovering sequential patterns [MTV95, SA96] is to find inter-transaction patterns,
i.e. the presence of a set of items followed by another item, in the time-stamp ordered transac-
tion set. In Web server transaction logs, a visit by a client is recorded over a period of time. By
analyzing this information, we can determine temporal relationships among data items such as:
(i) 30% of clients who visited /company/products/productl.html, had done a search in Yahoo,
within the past week on keywords w; and we; and (ii) 60% of clients who placed an online order in
/company/products/productl.html, also placed an online order in /company1/products/product4
within 15 days. Another important kind of information we may be interested in is the common
characteristics of all clients that visited a particular file within the time period [t1,%2]. Alterna-
tively, we may be interested in a time interval, i.e. an hour, day or week, during which a particular

_1-

file is most accessed.

As the examples above show, mining for knowledge from web log data has the potential of
revealing information of great value. While this certainly is an application of existing data mining
algorithms, e.g. discovery of association rules or temporal sequences, the overall task is not one
of simply adapting existing algorithms to new data. Because of many unique characteristics of
the client-server model in the World Wide Web, including radical differences between the physical
and logical data organizations of web repositories, it is necessary to develop a new framework to
enable the mining process. Specifically, there are a number of issues in pre-processing data for
mining that must be addressed before the mining algorithms can be run. These include developing
a model of web log data, developing techniques to clean/filter the raw data to eliminate outliers
and/or irrelevant items, grouping individual page accesses into semantic units (i.e. transactions),
and specializing generic data mining algorithms to take advantage of the specific nature of web log
data.

In this paper we present an architecture for a web mining system called the WEBMINER,
and our initial experiences with it. Our specific contributions include (i) development of a flexible
architecture for web mining, (ii) developing a model for a user transaction which consists of multiple
log entries, (iii) clustering algorithms for grouping log entries into transactions, (iv) adaptation of
association rule and temporal sequence discovery algorithms to web mining, and (v) experimental
evaluation of the system.

The rest of this paper is organized as follows: Section 2 discusses the architecture of the Web
mining process. Section 3 presents data and transaction models for Web mining. Section 4 we
present the implementation of the WEBMINER, and also present our experimental results with
the WEBMINER. Finally, in Section 5, we look at future and continuing research and development
issues.

2 An Architecture for Web Mining

A Web server access log contains a complete history of file accesses by clients. Most WWW
access logs follow the Common Log Format specified as part of the HT'TP protocol by CERN and
NCSA [Luo95]. A log entry, following this standard, contains the client IP address, user id, access
time, request method, and the URL of the page accessed, the protocol used for data transmission,
an error code, and the number of bytes transmitted. Table 1 shows a snapshot of a portion of the
WWW access log for the main Web server in the Computer Science Department at the University
of Minnesota.

The primary objective of Web mining is to discover interesting patterns in accesses to various
Web pages within the Web space associated with a particular server. In order to successfully apply
generic data mining techniques to web data, one must first transform this data to a suitable form. In
particular, unlike market basket analysis, where a single transaction is defined naturally according
to customer purchase activity, in Web data the notion of a transaction must be defined based on
the properties of the application domain.

Our proposed architecture, thus divides the web mining process into two main parts. The
first part includes the domain dependent processes of transforming the Web data into suitable
“transaction” form, and the second part includes the, largely domain independent, application of
generic data mining techniques (such as the discovery of association rule and sequential patterns)
as part of the system’s data mining engine. The overall architecture for the Web mining process is
depicted in Figure 1.

Generally, there are a variety of files accessed as a result of a request by a client to view a

Transformation Pattern Discovery

Data Integration

Transaction
Data Cleaning Derivation

. Formatted
Transaction Dat
Server Log Data Clean Log Data ata
Association
_____ Rules
_____ Integrated
Data
Sequential
Name [Patterns
Address [- ’
P —
Occupation]
Registration Clugtgrs &
Data Classification
Rules
Query
Mechanism

Figure 1: General Architecture for WEBMINER

looney.cs.umn.edu han
mega.cs. .edu njain
mega.cs. .edu njain
mega.cs.umn.edu njain
mega.cs.umn.edu njain
mega.cs.umn.edu njain
mega.cs.umn.edu njain

[09/Aug/1996:09:53:52 -0500] "GET /~mobasher/courses/cs5106/cs510611.html HTTP/1.0" 200 9370
[09/Aug/1996:09:53:52 -0500] "GET / HTTP/1.0" 200 3291

[09/Aug/1996:09:53:53 -0500] "GET /images/backgnds/paper.gif HTTP/1.0" 200 3014
[09/Aug/1996:09:53:53 -0500] "GET /images/misc/footer.jpg HTTP/1.0" 200 13355
[09/Aug/1996:09:54:12 -0500] "GET /cgi-bin/Count.cgi?df=CS-home.dat&dd=C&ft=1 HTTP/1.0" 200 646
[09/Aug/1996:09:54:18 -0500] "GET /~advisor HTTP/1.0" 302

[09/Aug/1996:09:54:19 -0500] "GET /~advisor/ HTTP/1.0" 200 487

looney.cs.umn.edu han - [09/Aug/1996:09:54:28 -0500] "GET /~mobasher/courses/cs5106/cs510612.html HTTP/1.0" 200 14072
mega.cs.umn.edu njain - [09/Aug/1996:09:54:31 -0500] "GET /~advisor/csci-faq.html HTTP/1.0" 200 13786
looney.cs.umn.edu han - [09/Aug/1996:09:54:47 -0500] "GET /~mobasher/courses/cs5106/princip.html HTTP/1.0" 200 6965
moose.cs.umn.edu mobasher - [09/Aug/1996:09:55:50 -0500] "GET /~suharyon/lisa.html HTTP/1.0" 200 654
moose.cs.umn.edu mobasher - [09/Aug/1996:09:556:53 -0500] "GET /~suharyon/line/line16.gif HTTP/1.0" 200 1423
moose.cs.umn.edu mobasher - [09/Aug/1996:09:55:57 -0500] "GET /~suharyon/jokol.jpg HTTP/1.0" 200 30890

umn
umn

Table 1: Sample Entries from a Web Server Access Log

particular Web page. These include image, sound, and video files; executable cgi files; coordinates
of clickable regions in image map files; and HTML files. Thus, the server logs contain many entries
that are redundant or irrelevant for the data mining tasks. For example, all the image file entries
are irrelevant or redundant, since as a URL with several image files is selected, the images are
transferred to the client machine and these files are recorded in the log file as independent entries.
We call the process of removing redundant or irrelevant entries from the Web server log files data
cleaning. Data cleaning is performed by checking the suffix of the URL name. For instance, all the
log entries with filename suffixes such as, gif, jpeg, GIF, JPEG, jpg, JPG and map are removed
from the log.

After the data cleaning, the log entries must be partitioned into logical clusters that represent a
single user transaction. One of the significant factors which distinguish Web mining from other data
mining activities is the method used for identifying user transactions. This process, which we call
transaction derivation is particularly important in the context of web data, because it allows the
discovery phase to focus on relevant access points of a particular user rather than the intermediate

-3 -

pages accessed for navigational reasons.

Recently, mazimal forward references have been proposed [CPY96] as a way to extract mean-
ingful user access sequences. However, this method does not consider that some of the “backward”
references may provide useful information or that not all forward references are meaningful for the
discovery process. We prefer to cluster several user references (entries in the clean log file) into
what would be considered a single user transaction. These transaction clusters are formed either
statically based on a user specified time gap, or dynamically, according to time distance between
entries, time spent on a particular page relative to its size, logical structure of the Web space, or
other possibly application dependent criteria. The transaction model for WEBMINER is presented
in the Section 3.

As depicted in Figure 1, access log data may not be the only source of data for the Web
mining process. User registration data, for example, is playing an increasingly important role,
particularly as more security and privacy conscious client-side applications restrict server access to
a variety of information, such as the client IP addresses or user IDs. The data collected through
user registration must then be integrated with the access log data. While WEBMINER currently
does not incorporate user registration data, we are exploring various data integration issues in the
context of Web mining. For a study of data integration in databases see [LHS195].

Once the domain-dependent data transformation phase is completed, the resulting transaction
data must be formatted to conform to the data model of the appropriate data mining task. For
instance, the format of the data for the association rule discovery task may be different than the
format necessary for mining sequential patterns. The Webmining data model for association rules
and sequential patterns are described in the next section. This allows for the application of generic
data mining algorithms to the Web transaction data.

Finally, a query mechanism will allow the user (analyst) to provide more control over the dis-
covery process by specifying various constraints. The emerging data mining tools and systems lead
naturally to the demand for a powerful data mining query language, on top of which many inter-
active and flexible graphical user interfaces can be developed [HFW'96]. Most of the conventional
query languages are constrained by a schema, but in our case, the data model does not fall in this
category. Recently, several query languages have been proposed which are not constrained by a
schema. DMQL [HFW96], UnQL [BDS95, BDHS96] and Lorel [QRY 795] fall into this category,
and can be easily extended to query the World Wide Web. Some guidelines for a good data mining
language were proposed in [HFW*96], which among other things, highlighted the need for specify-
ing the exact data set and various thresholds in a query. Such a query mechanism can provide user
control over the data mining process and allow the user to extract only relevant and useful rules.
In WEBMINER, we have implemented a simple Query mechanism by adding some primitives to
an SQL-like language. This allows the user to provide guidance to the mining engine by specifying
the patterns of interest.

As an example, consider a situation where the user is interested in the patterns which start with
URL A, and contain B and C' in that order, this pattern can be expressed as a regular expression
A x B x Cx. To see how this expression is used within a SQL-like query, suppose further that the
analyst is interested in finding all such rules with a minimum support of 1 % and a minimum
confidence of 90 %. Moreover, let us assume that the analyst is interested only in clients from the
domain .edu, and only wants to consider data later than Jan 1, 1996. The query based on these
parameters can be expressed as follows:

SELECT association-rules(A*B*C*)

FROM log.data

WHERE date > 960101 AND domain = edu AND
support = 1.0 AND confidence = 90.0

_4 -

This information from the query is used to reduce the scope, and thus the cost of the mining
process. The development of a more general query mechanism along with appropriate Web-based
user interfaces and visualization techniques are issues relevant to the future development of the
WEBMINER.

3 A Transaction Model for Web Mining

Unlike market basket analysis, where a market basket transaction is defined as the set of items
bought by a customer in a single purchase, there is no natural definition of a user transaction in
a web browsing scenario. For example, at one extreme we could consider each log entry to be a
separate transaction, while at the other we could consider all the entries in the log made by a
particular user as a single transaction. Since a transaction is used to model a useful unit of work,
either of these choices is probably too extreme. We believe that any approach to group web log
entries into transactions must use information about both the nature of data and the type of analysis
to be done on it. We propose to use such information in a 2-step process. In the first step we use
clustering as a general approach to grouping web log entries into transactions. The clustering is
based on comparing pairs of log entries and determining the similarity between them by means of
some kind of distance measure(s). Entries that are sufficiently close are grouped together. In the
second step, we use information about the type of analysis and specialize the groups formed in step
1 into transactions suited to the specific analysis. In the following, we first describe our general
clustering approach and its present implementation. Next, we show how information about the
type of analysis, viz. association rule discovery and temporal sequence discovery, can be used to
develop the respective transactions.

3.1 Clustering Log Entries into Groups

Let L be a set of server access log entries. A log entry [€ L includes the client IP address [.ip,
the client user id l.uid, the URL of the accessed page [.url, and the time of access [.tirne. There
are other fields in web log entries, such as the request method used (e.g., POST or GET) and the
size of the file transmitted. For our present illustration however, we only focus on the fields listed
above.

In using clustering to determine the similarity of two log entries, i.e. whether they belong to
the same group, distance metrics on many different attributes can be defined. Determining an
appropriate set of attributes to cluster on, and defining appropriate distance metrics for them is
an important problem, and is being addressed in our ongoing research. As an initial cut, we have
used only the time dimension for clustering of log entries. This is because time is the principal
dimension that captures the nature of web browsing, since this process is essentially sequential in
nature. Further, as illustrated in definition 1, the log entries are laid out on the temporal dimension,
and a time window is used for the grouping, where successive entries in a group can be at most a
maximum time gap At apart. In addition, we consider partition the log entries based on IP address
and user ID, since we are interested in browsing patterns of individual users.

Definition 1 A Log Entry Group (LEG) g is a triple:
g =< ipg, widg, {(1{.url, 1 time), ..., (1%,.url, 19, time)} >
where, for 1 < k < m, lz €L, lz.ip = 1Dy, lz.uid = uidg, and

lz_l_l.time — l,‘z.time < At

-5

As an example consider the log entries of Table 1. If the user-specified maximum time gap A is 1
minute, then the transaction belonging to the client njain (starting from time 09/Aug/1996:09:53:52),
will be the URL set {/, /~adviser, /~adviser/csci — faq.html}.

3.2 Extracting Association Transactions From LEGs

Determining association rules does not need any temporal information. Hence, in extracting asso-
ciation transactions from the log entry groups, we filter out the time information.

Definition 2 An association transaction t is a triple extracted from a log entry group g, so that
t =< ipg, uidg, {I{.url, ... 1§, url,} > (note that I, .time — [{ .time < At).

Let T be the set of all association transactions of the form < ip;,uid;, URL; > (as defined
above), where URL; = {lt.url,... It url}. We define the web space, WS, associated with the
access log as WS = ;e URL;. We define the support count for a set of URLs U € WS to be
o(U) = {t|lU C URL.}|. In other words, the support count for U is the number of times (within
the access log) that the URLs in U have been accessed by clients in one transaction. We can now
formally define the notion of an association rule in the context of Web mining.

An association rule is an expression of the form X == Y, where X C WS and Y C WS.
The support s of the rule X == Y is defined as o(X UY)/|T), and the confidence « is defined as

o(X UY)/o(X). The task of discovering an association rule is to find all rules X == Y, where s
is at least a given threshold and « is at least another given threshold. For example, the rule

{/company/products/, /company/products/productl.html} 0ugm /company/products/product2.html
indicates that 75% of clients who accessed the “products” section of the Web site and connected
to the page for “productl” in that section, also visited the page for “product2”, and that this
combination of events occurred in 1% of all transactions.

3.3 Extracting Temporal Transactions From LEGs

For the task of mining sequential patterns, we need to keep track of the access time for each of
the URLs accessed within that transaction. Furthermore, we are interested in the activity of a
particular client spanning the whole access log. We define a temporal transaction to be the set of
all the URL names and their access times for the same client where successive log entries are within
a user-specified time gap At. We also associate a unique time stamp with each such transaction.
In other words, a transaction is simply an LEG with a computed time stamp.

Definition 3 A temporal transaction t is a 4-tuple t =< ipy, uidy, UTy, time(t) > where
UT, =< (IL.url, I} time), ..., (15 url, It time) >,

such that for 1 < k < m, I, € L, lL.ip = ipy, lL.uid = uid, l,tcﬂ.time — It time < At, and
time(t) = maxi<j<m lL.time.

Let T be the set of all temporal transactions. For each transaction ¢t =< ip;, uid, UT; >€ T, we
call UT; the URL-Time Set (UT-Set) for t. A UT-Sequence is a list of UT-Sets ordered according
to transaction times. In other words, given a set 77 = {t; € T|1 < i < k} of transactions, a
UT-Sequence S for T" is: S =< UTy,,...,UTy, >, where time(t;) < time(tj1;) for 1 <i <k —1.

Given a client ¢ with ip address ip and user id u, let T, be the set of all temporal transactions
involving that client. So, T, = {t € T'|ip; = ip and uid; = u}. The UT-Sequence for T is a special

-6 —

sequence, S, called the client-sequence for ¢, composed of all the UT-Sets of transactions involving
a client c. In other words,
SC =<< UTtla UTt2, ey UTtn >

where for 1 <i¢ < n, t; € T,.

Definition 4 A UT-Sequence A =< ai,a9,...,a, > is a subsequence of another UT-Sequence
B =< by,by,...,by,, >, denoted A C B, if there exists integers i1 < 42 < ... < iy, such that
al g bi13a2 g biza"' n g bzn

Let ID be the set of all client ids (ip and uid pair) in the Web server access log. Then the
support count for a UT-Sequence S, denoted o(5), is:

o(S) = |{Sclc€ ID and ST S }|.

Intuitively, the support count for the UT-sequence S is the number of client sequences that support
S (i.e., include S as a subsequence). Now, given UT-sequences S = X -Y (where - denotes
concatenation of two sequences), a sequential pattern can be defined as an expression of the form
X 22 Y, where the support s of the rule X =5 Y is defined as o(X - Y)/|ID|, and the confidence
« is defined as 0(X - Y)/o(X).

The task of Web mining for sequential patterns is to find all rules X 2y (among all UT-
sequences S = X -Y'), where s is at least a given threshold and « is at least another given threshold.

4 Experimental Evaluation

In this section we describe the implementation of WEBMINER, a Web mining system based on
the framework presented in the previous sections and our experience with it. We give some of the
algorithms we have used in the implementation of techniques for discovering association rules and
sequential patterns from Web data.

We have run these algorithms on the access log of Cray Research Home Page located at
http://www.cray.com for the experiment. The log contains about 520K entries corresponding to
the requests made during May of 1996 and its size is about 56M Bytes.

4.1 Mining Association Rules

Given the access log of Cray Research Home Page, we used max time gap of 10 minutes to have
44K transactions of size 670K Bytes. There were 3686 distinct URLs referenced in the transaction.
Given the transactions, the problem of mining association rules is to generate all association rules
that have support and confidence greater than the user-specified minimum support (called minsup)
and minimum confidence (called minconf) respectively. We have used apriori algorithm presented
in [AS94] for mining association rules. We experimented with support between 0.05% and 1.0%
and confidence of 80%. The experiment was performed on a SUN SPARC Station 5 with 70 MHz
CPU, 32M Bytes main memory, 510M Bytes disk drive and SunOS Release 5.4. Table 2 shows
some examples of the rules discovered.

The first two are singleton rules without an antecedent. Rule 1 shows that 1.23% of transac-
tions contain the Liquid-cooled Cray T3E! System home page, while rule 2 shows that 0.68% of
transactions contain the Air-cooled Cray T3E Systems. This result is different from the results

!Trade Mark of Cray Research Inc.

Rule No. | Confidence(%) | Support(%) | Association Rules

1 100.00 1.23 /PUBLIC/product-info/T3E/LC_T3E.html
2 100.00 0.68 /PUBLIC/product-info/T3E/AC_T3E.html
3 82.83 3.17 /PUBLIC/product-info/T3E
—
/PUBLIC/product-info/T3E/CRAY_T3E.html
4 90.00 0.14 /PUBLIC/product-info/J90/J90.html
/PUBLIC/product-info/T3E
—
/PUBLIC/product-info/T3E/CRAY_T3E.html
5 97.18 0.15 /

/PUBLIC/product-info/J90
/PUBLIC/product-info/T3E/CRAY_T3E.html
/PUBLIC/product-info/T90

BN

/PUBLIC/product-info/T3E
/PUBLIC/sc.html

Table 2: Some Examples of the Association Rules Discovered

from other tools that provide statistical summary on the access log. Other tools do not have the
concept of transactions as defined here. As a result, if one client accesses one site several times in
a short span of time, simple statistics collection tools would report the hit several times. On the
other hand, in our system, the hit would be recorded only once because all of the accesses belong
to one transaction and the association transaction is defined as a set of items.

Rule 3 says that 82.83% of clients that accessed the URL /PUBLIC/product-info/T3E, also
visited /PUBLIC/product-info/T3E/CRAY_T3E.html which is under
/PUBLIC/product-info/T3E. Rule 4, on the other hand, shows that 90% of clients that accessed
/PUBLIC/product-info/T3E and /PUBLIC/product-info/J90/J90.html,
also visited /PUBLIC/product-info/T3E/CRAY T3E.html. These two rules demonstrate that clients
who access J90? home page and T3E top page visit T3E main home page (CRAY_T3E.html) about
7% more than other clients who just accessed the T3E main home page.

Based on the discussion of Section 1, we can already observe how these discovered rules can be
useful. For example, the combinations of rules 3 and 4 in Table 2 might suggest that there is a por-
tion of the content of the J90 page that encourages clients to go back and access the T3E page. By,
moving or copying this portion to a higher level in the hierarchy (e.g., /PUBLIC/product-info/T3)
we might be able to increase the overall support for rule 2 in the table.

4.2 Mining Sequential Patterns

In the implementation of WEBMINER, the time gap defining transactions for sequential patterns,
defined in section 3, is taken to be zero. Thus, UT-sequences are made up of singleton sets of items
and each item is a URL accessed by a client in a transaction.

We have modified the apriori algorithm to mine frequent sequential patterns. Note that the
support for a pattern now depends on the ordering of the items, which was not true for association
rules. For example, a transaction consisting of URLs ABCD in that order contains BC as an
subsequence, but does not contain CB. So, all permutations have to be generated. This is even
more computationally intensive than generating all combinations which has already been reported

2Trade Mark of Cray Research Inc.

Pattern No. | Support(%) | Sequential Patterns

1 5.63 /PUBLIC/sc.html —
/PUBLIC/product-info/T3E/AC_T3E.html
2 2.69 /PUBLIC/sc.html —

/PUBLIC/product-info/T3E/AC_T3E.html —
/PUBLIC/product-info/T3E/quotes.html

3 2.89 /PUBLIC/sc.html —
/PUBLIC/product-info/T90/BAYER.html —
/PUBLIC/product-info/T90/T90apps.html

4 0.93 /PUBLIC/product-info/RM/convergence9.html —
/PUBLIC/product-info/RM/images —
/PUBLIC/product-info/RM/hu7.html —
/PUBLIC/product-info/RM/unifying6.html

Table 3: Some Examples of the Sequential Patterns Discovered

to be difficult [AS94]. For getting around this problem, we have changed the joining operation for
candidate generation itself. In generating candidates of size £+ 1, instead of matching the first £k —1
elements of two frequent itemsets, we match the last k£ — 1 elements of the first frequent sequential
pattern of size k with the first £ — 1 elements of the second frequent sequential pattern of size k.
For finding the support of candidate sequential patterns, the question is: Given a UT-sequence
< Ay,..., A, >, how can we determine if there exists a subsequence < Bi,...,B; > within a
certain time span 7'S? The important factor to consider is that the number of occurrences of that
subsequence within the time span is insignificant. The only thing that matters is whether the
subsequence is present or not. Figure 2 gives the desired algorithm. The basic idea behind the
algorithm is to keep the latest starting times of all the prefixes of the subsequence. The algorithm
takes a transaction along with its time stamp, a subsequence, and a time span (7'S) as input.

1. Initialize prefixtime to -1;
2. for (all items i in transaction) do begin
3. if (firstitem of subsequence matches) then

4. prefixtime[l] = transtimeli];

5. for (all other items j in subsequence) do

6. if (item j of subsequence matches) then

7. prefixtime[j] = prefixtime [j - 1];

8. if (prefixtime[last] > 0 && transtime[i] - prefixtime[last] < T'S) then
9. return TRUE // subsequence found.

10. end

11. return FALSE // subsequence not found.

Figure 2: Algorithm gen_count

We have performed an experiment to find frequent sequential patterns from the access log of
Cray Research Home Page using the above algorithm. For this experiment, we did not consider
the confidence of the sequential patterns. Table 3 shows some examples of the sequential patterns
discovered.

Pattern 1 shows that 5.63% of the clients accessed the Supercomputing Systems home page
(sc.html) followed by Air-cooled Cray T3E systems home page. Pattern 2 shows that 2.69% of the
clients went on to check out the customer quotes on the T3E system after accessing the two URLs of

-9 —

Pattern 1. Pattern 3 demonstrates the sequential pattern of clients accessing the Supercomputing
Systems home page, the page containing a story on T90? technical solution for Bayer group and
the page containing application vendor quotes, in that order.

Discovered sequential patterns can be used to predict user actions or provide suggestions for
restructuring a site. For example, if one of the patterns in Table 3 is not desirable, then direct links
can be placed in corresponding pages in order to redirect client traffic patterns. Or, if a pattern
has a high confidence, it may be useful to put certain kinds of information (e.g., advertisements)
in the predicted path of clients corresponding to that pattern.

5 Conclusions and Future Directions

In this paper we have presented a framework for Web mining, the application of data mining and
knowledge discovery techniques to WWW server access logs. This framework includes a flexible
architecture distinguishing the domain specific data transformation tasks from the generic data
mining engine. We have also described WEBMINER, a system based on the proposed framework,
and presented experimental results on real-world industrial data to illustrate some of its applications
(Section 4).

Currently, we are extending the implementation of WEBMINER to incorporate mechanisms
for clustering analysis and discovery of classification rules. The query mechanism in WEBMINER
will also be extended to include clustering and classification constraints. Also an important area of
ongoing research is to find better methods of clustering log entries into user transactions, including
using criteria such as time differential among entries, time spent on a page relative to the page size,
and user profile information collected during user registration.

Another interesting area of future work involves the development of autonomous agents that
analyze the discovered rules to provide meaningful courses of action or suggestions to users (for
instance to make suggestions about modifying the organization of content within the Web space, to
automatically prefetch Web files based on discovered rules and user profiles, or to present various
users with dynamically generated content based on user patterns).

Other areas of future work include developing a more flexible query mechanism which can handle
both pre-discovery queries (on the data) and post-discovery queries (on the rules); integrating user
registration data with the access log data in the discovery process; and extending the WEBMINER
to process Web data distributed across several servers each collecting their own access log and user
registration data.

References

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of
the 20th VLDB Conference, pages 487-499, Santiago, Chile, 1994.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and opti-
mization techniques for unstructured data. In Proc. of 1996 ACM-SIGMOD Int. Conf.
on Management of Data, 1996.

[BDS95] P. Buneman, S. Davidson, and D. Suciu. Programming constrcuts for unstructured
data. In Proceedings of ICDT’95, Gubbio, Italy, 1995.

3Trade Mark of Cray Research Inc.

~10 -

[CPY96]

[eSI95]
[HFW*96]

[Inc96]
[KKS96]

[LHS'95]

[Luo95]

[MTV95]

[net96]
[QRY195]

[Qui93]

[SA96]

[ZHI5]

M.S. Chen, J.S. Park, and P.S. Yu. Data mining for path traversal patterns in a
web environment. In Proceedings of the 16th International Conference on Distrib uted
Computing Systems, pages 385392, 1996.

e.g. Software Inc. Webtrends. http://www.webtrends.com, 1995.

J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. Dmql: A data mining query
language for relational databases. In SIGMOD’96 Workshop on Research Issues in
Data Mining and Knowledge Discovery (DMKD’96), Montreal, Canada, 1996.

Open Market Inc. Open market web reporter. hitp://www.openmarket.com, 1996.

[. Khosla, B. Kuhn, and N. Soparkar. Database search using informatiuon mining. In
Proc. of 1996 ACM-SIGMOD Int. Conf. on Management of Data, Montreal, Quebec,
1996.

E. Lim, S.Y. Hwang, J. Srivastava, D. Clements, and M. Ganesh. Myriad: Design
and implementaion of federated database prototype. Software — Practive €& Ezxperience,
25(5):533-562, 1995.

A. Luotonen. The common log file format. http://www.w3.org/pub/WWW/, 1995.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in se-
quences. In Proc. of the First Int’l Conference on Knowledge Discovery and Data
Mining, pages 210-215, Montreal, Quebec, 1995.

net.Genesis. net.analysis desktop. http://www.netgen.com, 1996.

D. Quass, A. Rajaraman, Y.Sagiv, J. Ullman, and J. Widom. Querying semistruc-
tured heterogeneous information. In International Conference on Deductive and Object
Oriented Databases, 1995.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In Proc. of the Fifth Int’l Conference on Extending Database
Technology, Avignon, France, 1996.

O. R. Zaane and J. Han. Resource and knowledge discovery in global information
systems: A preliminary design and experiment. In Proc. of the First Int’l Conference
on Knowledge Discovery and Data Mining, pages 331-336, Montreal, Quebec, 1995.

— 11 -

