
Myths around Web Services

Gustavo Alonso

Department of Computer Science
Swiss Federal lnstitute of Technology (ETHZ), Switzerland

www.inf.ethz.chldepartment/IS/iks/

1 Introduction

Web services and the technology surrounding them have become the dominant trend in the electronic commerce
arena. XML, SOAP, UDDI, and WSDL, as the foundation of Web services, are all attracting considerable

attention as potential bridges between heterogeneous systems distributed acrass the Internet. The assumption
seems to be that soon most applications will speak and understand XML, that all systems will support SOAP, that
everybody will advertise their services in UDDI registers, and that all services will be described in WSDL. Once
that stage is reached, application integration and business to business (B2B) e-commerce will be straightforward.

Unfortunately, Web services are only the next step in the natural evolution of middleware. Therefore, by
design, Web services are evolutionary rather than revolutionary. The most basic form of middleware are RPC
engines. When such engines become transactional, they become TP-Monitors. Once object orientation aspects
are inc1uded, TP-Monitors evolve into Object Monitors. Message oriented middleware (MOM) also originated
fram TP-Monitors since persistent queuing was a feature of many TP-Monitors until they became systems
on their own. In fact, many· MOM platforms are RPC based. Web services are, primarily, an extension to
middleware platforms to allow them to interact across the Internet. Only from this perspective do many of the
developments in the Web services arena make sense, e.g., that one of the first protocols to be wrapped as SOAP
messages was RPC (and, at the time of writing, almost the only one to have been completely specified).

Of course, it is possible that Web services will trigger a radical change in the way we think about middleware,
application integration or the way we use the Internet. In that case, Web services will evolve into something yet
unforeseen. At this stage, however, this has yet to happen. In reality, and precisely because they were created
with that purpose in mind, Web services are used today almost exc1usively for conventional enterprise application
integration (which may or may not happen in a B2B setting). It is this experience as an extension to middleware
platforms that will define and shape Web services in the short and medium termo

There are nevertheless many proposals that take Web services well beyond their current capabilities: seman
tic web, dynamic marketplaces, automatic generation of B2B applications, seamless integration of IT infrastruc
tures from different corporations, etc. These proposals are the basis for presenting Web services as revolutionary,
rather than evolutionary. Such speculations are the province of long term research but they tend to ignore the
exact nature of Web services and the underlying technology. Many of these ideas also ignore the current limita
tions of existing middleware platforms although most of these limitations appear again at the Web service level.
In this regard, Web services have to a certain extent become an outlet for ideas that proved impractical in the

Copyright 2002 IEEE. Personal use of this material is permitted. However; permission to reprintlrepublish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component ofthis work in other works must be obtainedfrom the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



past. The result is a series of myths around Web services that make Web services, already quite a complex set
of ideas per se, even more difficult to comprehend, understand, and analyze.

In this paper we discuss some of these myths and try to c1arify how much truth there is in them. The goal is
to bring to the fore a few fundamental aspects of Web services and discuss in detail their practical implications.
These considerations can be seen as both a warning against expecting too much from Web services as well as
directions for future research since they are all open problems that remain to be solved before Web services can
be used in their full generality. The overall message is that, with the exception of standardization efforts (already
a significant step forward), today's Web services may have little to offer over conventional middleware.

2 A quick overview ofWeb services

Web services are a series of specifications around a very generic architecture [KrlO]. This architecture has three
components: the service requester, the service provider, and the service registry, thereby c10sely following a
c1ient/server model with an explicit name and directory service (the service registry). Albeit simple, such an
architecture illustrates quite well the original purpose of UDDI, WSDL and SOAP. In all cases, the information
managed by these specifications is in the form of XML documents.

UDDI The service registry is based on the UDDI specification (Universal Description, Discovery, and Inte
gration). The specification defines how to interact with a registry and what the entries on that registry look
like. Interactions are of two types: registration and lookup. Registration is the procedure whereby new service
descriptions are added to the registry. Lookup corresponds to queries sent by service requesters in search for
the right services. The entries contain three types of information: white, yellow and green pages. The white
pages contain generic information about the service provider (e.g., address, contact person, etc.). The yellow
pages inc1ude categorization information that allows the registry to c1assify the service (e.g., flight reservation,
search engine, or bookstore). The green pages contain information about the services interface and pointers to
the service provider (where the actual WSDL interface definition can be found).

There are already several UDDI registries maintained by software vendors. These public registries are meant
as low level, generic systems supporting only the most basic of interactions. The underlying idea is that more
sophisticated repositories (e.g., with advanced query capabilities) will be built on top of UDDI repositories.
Such servíce databases are, however, not part of the specification. UDDI also describes how to interact with a
repository using SOAP. Such support is intended not so much for dynamic binding to services (in the middleware
sense) as for developers building advanced service databases and other applications on top ofUDDI repositories.
Finally, there are two types of UDDI registries: public and private. Public ones are accessible to everyone and
play the role of open search engines for Web services. Private ones are those that companies or group of
companies create for their own use. For obvious reasons, industrial strength Web service implementations are
likely to be based on private repositories rather than on public ones. It remains to be seen to what extent private
repositories use UDDI as much of its functionality is not needed for private use.

WSDL The interface to a Web service is defined using WSDL (Web Services Definition Language). By
using WSDL, designers specify the type system used in the description, the messages necessary to invoke an
operation of the service (and their format), the operatíon protocol (whether it retums a response, etc.), the port
type or set of operations that conform an instance of a service, and the binding or actual protocol to be used to
invoke the operations of an instance of a service (e.g., HTTP). Note that what is known as servíce is a logical
unit encompassing all port types mapped to the same logical service (e.g., flight reservations through RPC or
through e-mail, each one of them being a port type of the flight reservation service).

2



SOAP Interaction between requester, provider and registry happen through SOAP (Simple Object Access
Protocol). SOAP specifies messages as documents encoded in XML divided into two parts: header and body.
Both the header and the body can be subdivided into blocks. Header blocks carry information pertaining the
interaction: e.g., security, authentication, transactional context, etc. Body blocks store the data used in the
interaction, e.g., which procedure is being called, each individual parameter, etc. SOAP also defines bindings to
actual transport protocols. A binding specifies how a SOAP message is transmitted using, e.g., HTTP.

SOAP can be best understood when it is considered as the specification of a protocol wrapper rather than a

communication protocol itself. The main point of SOAP is to provide a standardized way to transform different
protocols and interaction mechanisms into XML documents. As such, each concrete protocol needs a SOAP
specification. An example is the specification of how to use RPC over HTTP. The specification describes how
to encode an RPC invocation into an XML document and how to transmit the XML document using HTTP.

The syntax for these specifications is based on XML. Nevertheless, WSDL, and SOAP support alternative
type systems. In all cases, WSDL and SOAP should be seen as templates rather than strict standards. The fact
that two Web services use WSDL and SOAP does not immediately make them compatible. One of them could
be an RPC service accessible through HTTP. The other could be a batch service accessible through e-mail and
using EDIFACT. Both are Web services compliant with accepted specifications and yet perfectIy incompatible.

3 Myth 1: Web services and standards

The hype around UDDI, WSDL and SOAP has eclipsed many parallel (and previous) efforts along the same
direction. As a result, there is an obvious trend towards systems that are UDDI, WSDL, and SOAP specific.
Such trend thrives on the myth that Web services are an accepted and dominant standard. However, it is by no
means clear that Web services will displace existing technologies. Christoph Bussler has pointed out the fact
that standard no longer means globally unique in the B2B world. He predicts that, in addition to UDDI, WSDL
and SOAP, up to a few hundred competing B2B standards may coexist [BuOl]. Examples of such established
standards that will not simple go away are the Electronic Data Interchange (EDI) [EDIl, used in manufacturing,
and SWIFT [SWI], used in the financial world. Consequently, Bussler recommends developers to be agnostic
towards B2B standards and has also shown how the architecture of such generic systems should look like [Bu02].

Generality is certainly a solution to the lack of standardization. If no standard dominates, a generic archi
tecture can be easily adapted to whatever specification comes along. Unfortunately, generality comes at a price
and undermines the standardization efforts. The reason is that, in practice, Web services are not being built from
scratch. They are being built on top of existing multi-tier systems, systems that are all but general. Hence, many
Web services are biased from the start towards specific protocols, representations, and standards, Le., those al
ready supported by the underlying middleware. The necessary generality will only be achieved, if at all, by yet
additional software layers. Even the WSDL specification has allowed for such generalization by providing al
ternative entry points to a given Web service (the port types in the WSDL jargon). What is then wrong with this
picture? Michael Stonebraker argues that there is already too much middleware with competing and overlapping
functionality [St02]. He defends the need for integrating middleware functionality in just a few system types,
namely data federation systems, enterprise application integration (EAI) and application servers. Otherwise, the
sheer complexity of the IT infrastructure becomes unmanageable. This is an argument often repeated in the
middleware arena [Be96, AM97], where real convergence was starting to take place. Web services, however,
add new layers to the already overly complex multi-tier architecture typical of B2B interactions. Aiming for
generic systems will make matters even worse. Translation to and from XML, tunneling of RPC through SOAP,
clients embedded in Web servers, alternative port types, and many of the technologies typical of Web services
do not come for free. They add significant performance overheads and increase the already extreme complexity
of developing, tuning, maintaining and evolving multi-tier systems.

Taken together, these two concerns configure a difficult dilemma for Web services. The proliferation of

3



competing standards, whether based on the same syntax (XML) or not, will require additional software layers to
address interoperability problems. Even in those cases where a single set of standards can be used, web services
are being almost universally built as additional tiers over existing middleware platforms. Unfortunately, multi
tier architectures are already too complex and cumbersome. Adding more layers will not make them any better
and the sheer complexity and cost of such systems may prevent the widespread use of the technology. Without
widespread use, standards will fragment even further, thereby making it almost impossible to produce generic
enough platforms which, in turn, increases again the development and maintenance costs. The resulting vicious
circle can be the Achilles' heel of Web services as there is no obvious way out of it.

4 Myth 11:Web services in conventional applications

One of the drawbacks of Web technology is that it is still too tightly related to humans and browsers. Web
services have computers as their main users and are not based on browsers at all. Nevertheless, many of us still
think about Web services in the same terms we think about a Web browser: our first image of a web service is
that of an interactive one. Maybe with the execution driven by a computer instead of ahuman but interactive
nonetheless. The examples available in the literature, and not only in the research literature, corroborate this bias.
We have all seen many different variations of the traveling planner service, which has been misused so often
that it should become a standard on its own. Flight reservations, car rental and hotel booking, or buying a travel
guide, are all examples of interactive services. Moreover, all these services are typical Business to Consumer
(B2C) interactions, rather than B2B exchanges. This is an interesting development since Web services are being
pursued because oftheir potential impact on B2B not on B2C.

There are of course practical advantages in using Web services interactively and on-line. One example
often mentioned are applications that embed a search engine by using Web services [Sh02]. Other examples
are applications or operating systems that send periodic bug reports to the software vendor using a Web service,
applications that automatically download and install patches, or systems that use a remote service to pro vide
functionality that cannot be provided locally (e.g., access to a very large database that is not locally available).
These are all very appealing scenarios but it is not immediately obvious that Web services are the best way
to implement them. In some cases (e.g., information flow from the application to a server), this functionality
is already being provided without Web services and it is not clear that switching to Web services will bring
any significant advantages. In other cases, it does not seem reasonable to bloat the application with the whole
machinery of Web services to implement just a fancy feature. If the operating system eventually provides
support for accessing Web services to all applications, then this may make sense but we are quite far fram that
stage. Perhaps an even more decisive factor is that many of the features of Web services are irrelevant in these
settings. For instance, application specific information does not need to be sent as an XML document. Likewise,
interfaces used internally by a software vendor do not need to be described using WSDL (and certainly do not
need advertising using UDDI).

From a practical perspective, it is also not clear how to build applications that rely on Web services for part
of their functionality. The prablem has been recently analyzed by Clay Shirky [Sh02]. He points out that Web
services are still plumbing for the exchange of XML documents using SOAP. For interactive and on-line use
within applications, he identifies several crucial issues that remain unsolved. One of them is trust: how far can
the application trust and rely on external Web services which it does not control? Another one is the fact that we
do not yet understand the impact of Web services on software design as many of the techniques for component
based software development do not work with Web services. Answers to these questions are needed before Web
services are widely used as extensions to conventional applications. As Shirky also points out, it will not be a
trivial endeavor. It will require a whole new software engineering philosophy and tools that will not be available
any time soon.

4



5 Myth 111:Direct connectivity across corporate boundaries

Another myth resulting from ignoring the complexities of application integration and software design at a large
scale is the c1aim that Web services provide a direct link between middleware platforms of different corpora
tions. Most conventional middleware platforms are implemented on top of RPC: TP-Monitors, Object Monitors,
CORBA implementations, and even message oriented middleware. Because of its pervasiveness, RPC over
HTTP was one of the first interaction mechanisms specified using SOAP. By doing so, a Web service becomes
an extension of existing multi-tier architectures but with the client residing now at the other side of the firewall
and behind a Web server. Since B2B services are implemented using multi-tier systems, being able to use RPC
through SOAP is seen by many as a gateway to interconnect the IT infrastructure of different companies.

There are several problems with such an interpretation. One is that RPC results in a tight integration that
makes components dependent on each other. This is unacceptable in any industrial strength setting, specially if
the components belong to different companies. Not only would the complexity of the resulting system increase
exponentially, the mere act of maintaining the system would become a coordination nightmare with tremendous
costs. This is why the vast majority of B2B interactions happen asynchronously and in batch mode, not interac
tively. Rather than direct invocations, requests are batched and routed through queues. Responses are treated in
the same way. The actual elements ofthe interaction (c1ient and server, to simplify things) are kept as decoupled
as possible so that they can be designed, maintained, and evolved independently of each other. Systems based
on EDI and SWIFT are, again, good examples of the typicalloosely coupled architectures of B2B systems.

Proof of this is the strong trend towards asynchronous SOAP. The fact that the most widespread use of SOAP
is to tunnel RPC does not contradict this statement. Many queuing systems are implemented on top of RPC. A
message is placed on a queue and a daemon makes an RPC call to another remote daemon that takes the message
and places it on the receiving queue. Technically this is not only possible, it is a reasonable way of implementing
B2B interactions. From the point of view of Web services, however, it means that the Web service description
will be far more complex than an RPC invocation encoded as an XML message. The description may have more
to do with the interaction mechanism (the queues) than with the service interface itself. In fact, in many cases,
the actual service interface will not necessarily be made explicit. For instance, a service may simply indicate
that it is a queue that accepts EDIFACT purchase order messages without describing such messages (since their
format is already known to those using them).

6 Myth IV: UDDI and dynamic binding

An UDDI registry is conceptually similar to a name and directory server. There are, however, significant practical
differences between the two, differences that tend to be ignored and lead to the assumption that an UDDI registry
has the same purpose as a name and directory server. The result is the widespread assumption that dynamic
binding will be a common way of working with Web services. This is far from being the case and there are two
very strong arguments against this assumption.

From the point ofview offunctionality, UDDlregistries have been created as standardized catalogues ofWeb
services. The information they contain is intended for humans, not for computers. First, there is the problem of
the semantic interpretation of the parameters and operations defined by the interface. These parameters indicate
the expected type but not what the parameter actually means (e.g., a price is given as an integer but there might
not be any indication of the currency used). There is also the issue of how to deal with exceptions and how to
link them to the internal business processes. The service might also provide different ways to proceed depending
on the outcome of intermediate operations. Only a person can make sense of this information while using it will
require careful analysis and a significant design effort. Second, interactions between different companies are
regulated by contracts and business agreements. Without a proper contract, not many companies will interact
with each other. To think that companies will (or can) invoke the first Web service they find on the network is

5



unrealistic. Web service based B2B systems will be built through specialists who locate the necessary services,
identify the interfaces, draw the necessary business agreement, and then design and build the actual application
with the Web service either hardwired into the application code or defined as a deployment parameter.

From the software engineering point of view, dynamic binding is a double edge sword. If dynamic binding is
used simply to determine the location of a well defined service, it is indeed an useful feature. Any other form of
dynamic binding makes it almost impossible to develop real applications. CORBA already provided designers
with very fancy dynamic binding capabilities. An object could actually query for a service it had never heard of
and build on the fly a call to that service. Such level of dynamism makes sense only (if at all) in very concrete,
low level scenarios that appear almost exc1usively when writing system software. Application designers have
no use for such dynamic binding capabilities. How can one write a solid application without knowing what
components will be called? It is nearly impossible to write sensible, reliable application logic without knowing
what exceptions might be raised, what components will be used, what parameters these components take, etc.
In its full generality, dynamic binding does not make sense at the application level and this also holds for Web
services. In regard to dynamic binding as a fault tolerance and load balancing mechanism, in the context of Web
services, the UDDI registry is simply the wrong place for it. UDDI has been designed neither with the response
time capabilities, not the facilities necessary to support such dynamic binding. Moreover, the UDDI registry
cannot do any load balancing nor any automatic fail over to a different URI in case of failures. It is simply not
designed to do that. Such problems are to be solved at the level of individual Web service provider using known
techniques like replication, server c1ustering, and hot-backup techniques.

UDDI registries will, thus, be used by programs only to the extent that service publishing will be automatic
in many systems and search over an UDDI registry will happen through specialized added-value tools built on
top the UDDI registries.

7 Myth V: all data will be in XML

XML is a blessing as a syntax standard. It allows to build generic parsers that can be used in multitude of
applications, thereby ensuring robustness and low cost for the technology. Unfortunately, this significant advan
tage does not compensate for the fact that XML is a performance nightmare. There are also many data types
that do not get along well with XML. e.g., anything that is binary or nested XML documents [Sa02]. In many
cases, even if it is possible, there is no point in formating the application data as an XML document. We have
already mentioned an examp1e: a Web service implemented as a queue expecting EDIFACT e-mail messages
does not gain much by having the message encoded in XML. In fact, it only loses performance and introduces
unnecessary software layers.

XML encoding makes sense when linking completely heterogeneous systems or passing data around that
cannot be immediately interpreted. It also makes sense when there is no other standard syntax and designers
must choose one. When Web services are built based on already agreed upon data formats, then the role of
XML is reduced to be the syntax of the SOAP messages involved. This is why there is such a strong demand for
SOAP to support a binary or blob type. There are several ways of doing this [Sa02]: using URLs as pointers,
as an attachment or with the recently proposed Direct Internet Message Encapsulation (DIME) protocol [Ni02].
Whatever mechanism becomes the norm, expect an increasing amount of Web service traffic to contain binary
rather than XML data.

The use of binary rather than XML for formatting application data has a wide range of implications for
Web services. First, it will provide a vehic1e for vertical B2B standards to survive even if Web service related

specifications become dominant. This is directly related to the discussion above on Myth 1. In practice, Web
services become just a mechanism to tunnel interactions through the Internet, their original intended goal. The
actual interaction semantics will be supported by other standards, those use to encode the data in binary (e.g.,
once more, EDI or SWIFT). The question will then be whether Web services provide enough added value to

6



justify the overhead. Second, related to Myth III, Web services implemented over binary data will describe only
the interaction. They cannot specify the actual prograrnmatic interface of the service as this is hidden in the
binary document and, therefore, cannot be controlled by the Web services infrastructure. This will reduce even
further the chances of having tight1y coupled architectures built around Web services. Finally, related to Myth
N, Web services based on binary formats will increase the dependency on humans for binding to services as
much of the information needed to bind to a service might be external to the Web service specification.

8 Conclusions

After the burst of the Internet bubble, several critical voices have been raised against the hype around e
commerce, e.g., [Co02]. Web services are, to a great extent, still riding that hype and generating their own.
To keep things in the proper perspective, it is useful to understand the original purpose of a given technology.
This does not prevent the technology from becoming revolutionary, but it helps to identify those that are merely
evolutionary. Web services are, at the current stage, only a natural evolutionary step from conventional appli
cation integration platforms. In spite of the many grand ideas being proposed in both industry and academia,
there is a fair chance that market forces and sheer practicality will keep the role ofWeb services to, indeed, mere
plumbing for B2B exchanges.

Acknowledgments

Part of this work is supported by grants from the Hasler Foundation (DISC Project No. 1820) and the Swiss
Federal Office for Education and Science (ADAPT, BBW Project No. 02.0254/ EU IST-2001-37126).

References

[AM97]

[Be96]

[BuOl]

[Bu02]

[Co02]

[EDI]

[KrlO]

[Ni02]

[Sa02]

[Sh02]

[St02]

[SWI]

G. Alonso, C. Mohan. WFMS: The Next generation of Distributed processing Tools. In: Advanced Trans
action Models and Architectures. S. Jajodia and L. Kerschberg (Eds.). Kluwer Academic Publishers, 1997.

Philip A. Bernstein. Middleware: A Model for Distributed System Services. CACM, Vol. 39 No. 2, Feb
1996.

C. Bussler. B2B Protocol Standards and their Role in Semantic B2B Integration Engines. IEEE Data
Engineering Bulletin, Vol 24. No. 1, March 2001.

C. Bussler. The Role of B2B Engines in B2B Integration Architectures. Sigmod Record, Vol. 31 No. 1,
March 2002

T. Coltman et al. Keeping E-business in perspective. CACM, Vol. 45, No. 8, August 2002.

United Nations Directories for Electronic Data Interchange for Administration, Commerce and Transport.
http://www.unece.org/trade/untdid/welcome.htm

H. Kreger. Web Services Conceptual Architecture (WSCA 1.0). IBM. Available from:
http://www-4.ibm.comlsoftwarelsolutions/webservices/pdfIWSCA.pdf

Nielsen H. F. et al. Direct Internet Message Encapsulation (DIME). Internet draft, draft-nielsen-dime-02,
June,2002.

R. Salz. Transporting Binary Data in SOAP. Published on XML.com
http://www.xml.comlpub/ a/2002/08/28/endpoints.html

C. Shirky. Web Services and Context Horizons. IEEE Computer, Vol. 35 No. 9, September 2002.

Michael Stonebraker. Too Much Middleware. ACM Sigmod Record, Vol. 31 No. 1, March 2002

S.w.I.F.T. SCRL. http://www.swift.coml

7


